NIX

from a build system to an ansible replacement

build system

edit : main.o command.o display.o insert.o utils.o
cc -0 edit main.o command.o display.o insert.o utils.o

maln.o : main.c defs.h
CC -C mailn.c

command.o : command.c defs.h command.h
cc -c command.c

display.o : display.c defs.h buffer.h
cc -c display.c

insert.o : insert.c defs.h buffer.h
cC -c 1nsert.c

utils.o : utils.c defs.h
cc -c utils.c

build system

utils.o : utils.c defs.h
cc -c utils.c

target : prerequisites
recipe

prerequisites are referenced in the recipe, thus should be considered part of the recipe
target is the consequence of the recipe, thus should be a function of the recipe

build system

let's name the minimal unit of a build as: derivation
(disclaimer: codes bellow are just rough approximations of how nix really works)

utils.o : utils.c defs.h
cc -c utils.c

derivation {
builder = "cc -c utils.c";

Ji ¢
name the output

evaluate the derivation, and normalize 1t
{"builder": "cc -c utils.c"}

then we hash the normalized derivation string
0y8761qq57qyb4x5j01374z13gifwga3nnc4qb603gc2jnd42rfroé

build system

to ensure the reproducibility of nix derivations, we also have to track the inputs
a natural design is that every input must be the output of another derivation

cc = derivation { ... };
utils.c = derivation { ... };
utils.o = derivation {

builder = "${cc} -c ${utils.c}";
lif

which 1s normalized 1nto
{"builder": "O@ssilwpaf7plaswqqjwigppsg5fyh99vdlb9kz17¢c91ng89ndgli -c @jbrxcbbrdvfpwljhcw7mr64h1n819ccm... "}

take notice of the implicit input: defs.h, which is likely to be missed by other build systems
nix build derivations in sandboxes in which only the referenced pathes can be reached
no more unexpected build failures

build system

relative paths are inherently ambiguous
thus we replace them with absolute pathes, by prepending a common prefix: the nix store

{"builder": "/nix/store/@ssilwpaf7plaswqqjwigppsg5fyh99vdlbokz17c91ng89ndqli -c /nix/store/0jbrxcbbrdv... "}

everytime any of the inputs of a derivation is changed, wether it's the compiler or a source file
the derivation itself is changed, thus the inputs are tracked effectively and reliably

build system

NIX

further enhancment to nix derivations

cc = derivation { ... };
utils.c = derivation { ... };
utils.o = derivation A
hashes are nice for machines, not humans (name is appended to the original hash)
name = "utils.o";
we can tell the builder where to put our output at build time
builder = "${cc} -0 $out -c ${utils.c}";
the platform, on which the derivation could be build

system = "x86_64-1l1inux";
extra key value pairs that would be passed to the builder as envvars
foo = "bar";

build system

and expand the definition of derivation output from a single file, to a tree

—— bin
L— cc

—— 1nclude
L c++

but how do we hash a tree of files
we can first combine them into a tarball then hash the tarball
however tar is not deterministic, thus we serialize it into Nix ARchive, a deterministic archive format

build system

not all files are built, some are just lying around, for example, utils.c
we treat them specially and give them the name: fixed output derivations (or FOD)
their path is not the hash of the derivation itself, but rather the hash of it's output

derivation {

name = "utils.c";

builder = "none";

system = "x86_64-11nux";

outputHash = "0jbrxcbbrdvfpwljhcw7mr64hln819ccmpydb680n9wp3mm974sd” ;
I

as FODs have fixed output hashes, they can be built outside of the sandbox

build system

and, we add a syntax sugar into the nix language: you can reference a local path as a derivation
which will be copied into the nix store at evaluation time, and transformed into a FOD

cc = derivation { ... };
utils.o = derivation {
name = "utils.o";
src .Jutils.c;
builder = "${cc}/bin/cc -0 $out -c $src";
system "x86_64-11nux";

build system

binary caches
given a derivation, we know that it will be realized into the same output

whenever, wherever

never build software more than once

We can serve our nix store as a binary cache
to reuse store pathes across machines

there’'s no need to build the same chromium variant twice

build system

= derivation is the smallest unit of compilation in nix, just like a rule in makefile
= derivation is the combination of what and how to build the output
= the inputs of a derivation must be derivations

= the absolute path of the output is determined by hashing the derivation’s normalized form, before building

= derivations are built in sandboxes with no network access and only access to required pathes
= 3 special type of derivation: FOD exists, to bring in sources as derivations

®m build results can be shared as binary caches, eliminating the need for duplicated builds

build system

nix is a build system, but most of the existing projects are already using other build systems
let me Introduce: generic builders, which bridges the gap between nix and them

builder = "'

for dep in $deps; do
export PATH=$dep/bin:$PATH
done

tar -xf $src

./configure --prefix=$out
make

make 1nstall

hello = derivation {

name = "hello";

src = ./hello.tar.gz;
builder = builder;

system = "x86_64-1linux";
deps = [gcc gnumake ... |

build system

rust, golang, c++, python...
there are so many languages and frameworks

can we unite the efforts in building softwares
thus we have nixpkgs

The Nix Packages collection (Nixpkgs) is a set of thousands of packages for the Nix package manager, released under a permissive

MIT/X11 license. Packages are available for several platforms, and can be used with the Nix package manager on most GNU/Linux

distributions as well as NixOS.

nixpkgs provides not only the compiler toolchains as a basis for other packages, but also infrastructures for
packaging applications written in various languages and frameworks

and

build system

25000

@®FreeBSD Ports

nixpkgs unstable

>
S
= ®CRAN .
m ®Raspbian Testing LR LS
o ®Hackage @LCaovuaniUnstable
e i ®AUR
2 ‘.%%L&Jl |%)3(Lﬁ9gllllong.aera)
£ ®Fedora Rawhlde
" DPorts
% ®Fedora 34
2
%
o OPyPI @Ubuntu 20.10
K=
3 @®Fedora 33
'
Y
et 8 @®Ubuntu 20.04
° /5€nt60> §FSdM 32 _ |
o .(.PA ®@openSUSE '.I'_r'S‘Ilﬁsly\rhpupd @®Raspbian Stable
_g @®MetaCPAN R s o O@Fedora3l Pardus1E00;
S @M:®,pkOsTEsEurTen 1 eFedora 30 ¢ Pardusil90¢(Beowulf)
2 .o'g};\njarg Unstable, ®Fedora 29
: OOpenManc.Na'Cooker eFedora 28 ‘®Ubuntu 18.04
®Manjaro Stable ! 5 @Raspbian Oldstable
®Mageia 8 @Fasora 27
ALORG:E 20O - pardusit7os(asell)
i = en ®Rosa 2014.1 ‘®Ubuntu; 16.04
r OpenBQ. Grts. 2y ®Funtoo 1.4
.Ope.nl |fa'?1'éf"|$/h "Y'Sge' D Y .
AN 1A nc
Homebrew ®0penSUSE Leap 15.3 @ 5gHiatg,; 171005
o @ P Aih‘."l'jgﬂsglé% Leap 15.2
O Rl G g E % uilds e emmetiuie
.]q;\‘A:rQX-"éasref v20%2lr33 veIopm'ecn':t Leap'15.1
p INUX=3
Eﬁa'té: Lo’**_' .EPEL “®0penSUSE Leap 42.3
Y@@ ne s aTobis
.o‘ﬂsrle(cgf:'mr:]lt_x%a-ll
%)“KGIImyﬂOZOurrent
" ‘;Qaylemux;SJ)'(ﬁ,X;, ed.
O 0 B S AN B i ainady
0(\‘ X< Mlntl-l*8’l|menta|su_n aCKp. rtss - " 2
v Number of packages in repository 61000

build system

NIX

a real life example of building a golang package

{ fetchgit, buildGoModule, fetchFromGitHub, lib }:
buildGoModule rec {
pname = "k@sctl";
version = "v0.8.4";
src = fetchgit {
url = "https://github.com/k@sproject/k@sctl”;
rev = "v0.8.4";
sha256 = "08k0aa73kb4hs4z18a2nmasagdczmppb2r@slafj287c2asynw73";
I
vendorSha256 = "sha256-8GFZxjkLeTGWxJ3uzaPZaeeJlzmmPN9Ao3z8a3JooP0s=";
subPackages = ["." |;
meta = with lib; {
homepage = "https://github.com/k@sproject/kdsctl"”;
license = licenses.asl20;

b

build system

NIX

and | hear gentoo users screaming: where are my use flags

{ fetchurl, fetchpatch, lib, stdenv, pkg-config, libgcrypt, libassuan, libksba
, libgpgerror, libiconv, npth, gettext, texinfo, buildPackages
, guiSupport ? true, pinentry ? null }:
stdenv.mkDerivation rec {
pname = "gnupg";
version = "2.2.27";
src = fetchurl {
url = "mirror://gnupg/gnupg/${pname}t-${version}.tar.bz2";
sha256 = "1693s2rp9sjwvds1j94n03wnb6rxysjy0dl10g1698afo44hliril”;
It
nativeBuildInputs = [pkg-config texinfo |;
buildInputs = [
libgcrypt libassuan libksba 1libiconv npth gettext
readline libusbl gnutls adns openldap zlib bzip2 sqlite
15
pinentryBinaryPath = pinentry.binaryPath or "bin/pinentry";
configureFlags = [
"—-with-libgpg-error-prefix=${libgpgerror.dev}"
] ++ optional guiSupport "--with-pinentry-pgm=${pinentry}/${pinentryBinaryPath}";

package manager

being able to build packages in a reproducible, declarative and reliable manner is great
but it makes little sense if we cannot install them
which, is the role of a package manager

package manager

the build time dependencies are explicitly specified

and the runtime dependencies are automatically recognized
by serializing the store path into Nix ARchive

then search for references to other store pathes within it

$ nix-store -q --references /nix/store/x64nf80gzcqbv5jlisnnkvwd73n9v4sy-nano-5.7
/nix/store/sbbifs2ykc05inws26203h0xwcadnf@l-glibc-2.32-46
/nix/store/9m4hy7cy70w6v2rgjmhvd7ympgkjbéyxk-ncurses-6.2
/nix/store/x64nf80gzcqbv5jlisnnkvwd73n9v4sy-nano-5.7

by searching for references recursively, we can form a closure of the package to install
that is, itself and all it's direct and transitive runtime dependencies

package manager

when we want to /nstall a derivation
there are generally two possibilities

1. the closure is already in the store or available from a binary cache

2. it has to be built

the first case is trivial, for the second case, we build it, then we infer the closure
now that it's already in the nix store, we only have to create a view of the nix store to make it accessible

activation = "export PATH=${hello}/bin:${nano}/bin";

a new concept: activation script
activation script i1s an idempotent shell script the bring whatever in the nix store into life

for the example above, we may as well symlink all the packages to install, into /usr/bin
mimicking the behavior of traditional package managers

package manager

advantages over traditional package manager

= no SAT solver

= nstall multiple versions or variants of the same package together
" no assumptions about the global state of the system
= no replace file in-place

= no worry about kernel panic midway a upgrade

package manager

[winget can only install packages for now, but not remove them

garbage collection to the rescue
when we install a derivation, we register it as a gcroot
when we remove it, we deregister it

periodically, we walk through all reachable store pathes from the gcroots
then we can safely remove the unreachable pathes

operating system

an operating system is a collection of packages, and their configurations

— bin
—— 1nclude
— 1ib

L— share

operating system

why there must be an an artificial separation between packages and configurations

— store

— zzbgphmlv31zfi7x3hvjdwlxj3kl9vg-activate
L— zzvg5qwlm2xikawfgxb@q8gl2bw391a9-foo

— bin

— share

—— include
L— 1ib

L— var/nix/profiles/system/activate -> /nix/store/zzbgphmilv31zfi7x3hvjdwlxj3kl9vg-activate

operating system

{ config, pkgs, ... r: {
boot.loader.systemd-boot.enable = true;
boot.kernel.sysctl = {

"kernel.panic" = 10;
"kernel.sysrq" = 1;
Ire
boot.kernelParams = |
"quiet"

"mitigations=off"
I;
fileSystems."/".device.label = "nixos";
environment.systemPackages = with pkgs;[git gnupg rustc I;
services.sshd.enable = true;

declaratively config your operating system, from the bootloader, to every running service

configuration management

expand the configuration of a single host, to a fleet of hosts

- name: configure db servers
hosts: databases
remote_user: root
tasks:
- name: ensure that postgresql 1s started
ansible.builltin.service:
name: postgresql
state: started

{ config, pkgs, 1lib, ... }: {
services.postgresqgl.enable = true;

}

{ config, pkgs, lib, ... }: {

imports = [./postgresql.nix];

configuration management

the power of nixos roots in the nix language

= validate configuration fields before deployment
m reference values across modules of configuration
® reuse configuration efficiently

= unified language for any system component

configuration management

{ pkgs, config, ... |:
let
socketPath = "${config.services.traefik.dataDir}/podman.sock";
1n
{
virtualisation.ocl-contalners.backend = "podman";
virtualisation.oci-containers.containers = { ... };

systemd.services.podman-traefik.serviceConfig.ExecStart = "'
${pkgs.socat}/bin/socat \
UNIX-LISTEN:${socketPath} \
UNIX-CONNECT:/run/podman/podman.sock

T,
?

services.traefik = {
enable = true;
staticConfigOptions = {
providers.docker = {
endpoint = "unix://${socketPath}";

for the curios
= hail hydra!

NiX0s.org

= still want to dive deeper

nix pills

= how to get something done

nix.dev

= telegram group

@nixos_zhcn

https://nixos.org/
https://nixos.org/guides/nix-pills/
https://nix.dev/
https://t.me/nixos_zhcn

