
Object-Oriented Programming in Scala
(Tunight Talk)

Paul

May 30, 2020

Paul Object-Oriented Programming in Scala May 30, 2020 1 / 62

Tonight

1 What is Scala & OO?

2 Objects: The Essence

3 Traits: Key of Code Reuse

4 Subtyping: The Soul
Type Bounds
Variances
Intersection & Union Types

5 Advanced Typing Features

Paul Object-Oriented Programming in Scala May 30, 2020 2 / 62

Contents

1 What is Scala & OO?

2 Objects: The Essence

3 Traits: Key of Code Reuse

4 Subtyping: The Soul
Type Bounds
Variances
Intersection & Union Types

5 Advanced Typing Features

Paul Object-Oriented Programming in Scala May 30, 2020 3 / 62

Scala

Invented by Martin Odersky, EPFL

Scala stands for “scalable language”

Runs on JVM

Famous Projects
I Spark: https://spark.apache.org
I Flink: https://flink.apache.org
I Akka: https://akka.io
I Scalding: https:

//github.com/twitter/scalding
I Play: https://www.playframework.com

Paul Object-Oriented Programming in Scala May 30, 2020 4 / 62

https://spark.apache.org
https://flink.apache.org
https://akka.io
https://github.com/twitter/scalding
https://github.com/twitter/scalding
https://www.playframework.com

Pros & Cons

Pros:

Seamlessly interact with existing Java libraries

Write less, synthesize more

Flexible (syntax, programming paradigm)

Leading language features that have been C# 9.0, Java 14, etc.
Cons:

“Academic language”

Steep learning curve

Hard to hire people

Slow compilation and running

Paul Object-Oriented Programming in Scala May 30, 2020 5 / 62

Object-Oriented?

Some say:
The key features of object-oriented programming are encapsulation, inheritance and
polymorphism.

However, I find that Haskell, a purely functional programming language, also has them:

functions are encapsulated (black box, no side effect)

inheritance of type classes (e.g. Ord extends Eq)

polymorphism derived from system F (e.g. id :: a -> a for all type a)

Paul Object-Oriented Programming in Scala May 30, 2020 6 / 62

Contents

1 What is Scala & OO?

2 Objects: The Essence

3 Traits: Key of Code Reuse

4 Subtyping: The Soul
Type Bounds
Variances
Intersection & Union Types

5 Advanced Typing Features

Paul Object-Oriented Programming in Scala May 30, 2020 7 / 62

Slogan

Objects are first-class citizens!

Paul Object-Oriented Programming in Scala May 30, 2020 8 / 62

Operators are Just Methods

1 + 2 // 1.+(2)
true && false // true.&&(false)

case class Point(x: Int, y: Int) {
def +(that: Point): Point = Point(this.x + that.x, this.y + that.y)

}
Point(1, 2) + Point(3, 4) // -> Point(4, 5)

Operators are regarded as normal identifiers:

val ++ = 1
++ + ++ // -> 2

Paul Object-Oriented Programming in Scala May 30, 2020 9 / 62

Functions are Just Objects

A binary function is an instance of the following trait:

trait Function1[-T1, +R] extends AnyRef {
def apply(v1: T1): R

}

Calling a function means to invoke the apply method:

val twice = (x: Int) => x * 2
// new Function1[Int, Int] {
// def apply(x: Int) = x * 2
// }
twice(5) // twice.apply(5)

Paul Object-Oriented Programming in Scala May 30, 2020 10 / 62

Singleton

Singleton design pattern in Java:

public class Printer {
private static final Printer instance = new Printer();
private Printer() { /* ... */ }
public static Printer getInstance() {

return instance;
}

}

In Scala:

object Printer { /* ... */ }

Paul Object-Oriented Programming in Scala May 30, 2020 11 / 62

Objects as Parameters

Recall that “obj f x” is a short-hand for “obj.f(x)”. In designing a domain-specific
language (DSL), this syntax comes in handy:

object now
object simulate {

def once(behavior: => Unit) = new {
def right(n: now.type): Unit = /* ... */

}
}

simulate once { someAction() } right now
// simulate.once({ someAction() }).right(now)

Paul Object-Oriented Programming in Scala May 30, 2020 12 / 62

Singleton Types

A singleton type is a type inhabited by exactly one value. We access the type of an object
using the “.type” syntax:

object A
def foo(x: A.type) = x
foo(A)

In Scala 3, a literal itself is also a singleton type:

def bar(x: 1, y: 2) = x + y
bar(1, 2) // -> 3
bar(1, 3) // type error
bar(1, 1+1) // -> 3

Paul Object-Oriented Programming in Scala May 30, 2020 13 / 62

Objects as Modules

// Scala 2 (methods cannot be top-level components):
object MyLibrary {
def parseId(s: String): Int = ???

}
// In another file
import MyLibrary._

// Scala 3 (methods can be top-level components):
def parseId(s: String): Int = ???

In Scala, object scala.Predef is automatically imported into scope:

println("Hello, world")

Unlike in Java:

System.out.println("Hello, world");

Paul Object-Oriented Programming in Scala May 30, 2020 14 / 62

Static Members v.s. Companion Object

Java people use static members:

class User {
private static int count = 0;

public final String name;
public final int id;
public User(String name) {

this.name = name;
this.id = count;
count++;

}
}

Scala people use companion object:

class User(name: String) {
import User._
val id: Int = count
increase()

}

object User {
private var c = 0
private def count = c
private def increase() = c += 1

}

Paul Object-Oriented Programming in Scala May 30, 2020 15 / 62

Contents

1 What is Scala & OO?

2 Objects: The Essence

3 Traits: Key of Code Reuse

4 Subtyping: The Soul
Type Bounds
Variances
Intersection & Union Types

5 Advanced Typing Features

Paul Object-Oriented Programming in Scala May 30, 2020 16 / 62

Trait?

Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and
field definitions, which can then be reused by mixing them into classes. Unlike class
inheritance, in which each class must inherit from just one superclass, a class can mix
in any number of traits.

– Chap. 12, Programming in Scala (2ed)

Paul Object-Oriented Programming in Scala May 30, 2020 17 / 62

A Philosophical Frog

trait Philosophical {
def philosophize(): Unit = println("I consume memory, therefore I am!")

}

abstract class Animal {
def isAnimal: Boolean = true

}

class Frog extends Animal with Philosophical {
override def toString = "green"

}

object Main {
def main(args: Array[String]) = (new Frog).philosophize()
// -> I consume memory, therefore I am!

}

Paul Object-Oriented Programming in Scala May 30, 2020 18 / 62

Underlying Technique: Mixin

Let’s disassemble the compiled JVM byte code:

javap -v Philosophical
javap -v Animal
javap -v Frog
javap -v Main$
javap -v Main

Paul Object-Oriented Programming in Scala May 30, 2020 19 / 62

Trait v.s. Interface

In Java 8 (or higher):

@FunctionalInterface public interface Comparator<T> {
int compare(T o1, T o2);
default Comparator<T> reversed() { // since 1.8

return Collections.reverseOrder(this);
}
/* ... */

}

In Scala:

trait Ordering[T] extends Comparator[T] with PartialOrdering[T] {
def compare(x: T, y: T): Int
def reverse: Ordering[T] = /* ... */
def max(x: T, y: T): T = /* ... */
/* ... */

}

Paul Object-Oriented Programming in Scala May 30, 2020 20 / 62

Trait Inheritance: Ordering

trait Ordering[T] extends Comparator[T] with PartialOrdering[T]
trait PartialOrdering[T] extends Equiv[T]
trait Equiv[T]

Like Haskell’s type class:

class Eq a => Ord a where
compare :: a -> a -> Ordering

data Ordering = LT | EQ | GT

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

Paul Object-Oriented Programming in Scala May 30, 2020 21 / 62

Trait Inheritance: Abstract Algebra

class Group a => Abelian a
class Monoid a => Group a where
invert :: a -> a

class Monoid a where
mappend :: a -> a -> a
mempty :: a

can be translated into

trait Abelian[T] extends Group[T]
trait Group[T] extends Monoid[T] {
def invert(x: T): T

}
trait Monoid[T] {
def (x: T) * (y: T): T // Scala 3
def _1: T

}

Paul Object-Oriented Programming in Scala May 30, 2020 22 / 62

Linearlization

class Animal
trait Furry extends Animal
trait HasLegs extends Animal
trait FourLegged extends HasLegs
class Cat extends Animal with Furry with FourLegged

Type Linearization

Animal Animal, AnyRef, Any
Furry Furry, Animal, AnyRef, Any
FourLegged FourLegged, HasLegs, Animal, AnyRef, Any
HasLegs HasLegs, Animal, AnyRef, Any
Cat Cat, FourLegged, HasLegs, Furry, Animal, AnyRef, Any

Paul Object-Oriented Programming in Scala May 30, 2020 23 / 62

Conventions

Should I use a trait, an abstract class or a concrete class?

the behavior will not be reused: concrete class

it might be reused in multiple, unrelated classes: trait

it will be inherited in Java code: abstract class

still do not know: trait

Paul Object-Oriented Programming in Scala May 30, 2020 24 / 62

Trait Parameters

In Scala 3, traits are allowed to have parameters:

trait Greeting(val name: String) {
def msg = s"How are you, $name"

}

class C extends Greeting("Bob") {
println(msg)

}

class D extends C with Greeting("Bill") // error: parameter passed twice

Paul Object-Oriented Programming in Scala May 30, 2020 25 / 62

Brainstorming

Q: Which programming languages have traits?

Paul Object-Oriented Programming in Scala May 30, 2020 26 / 62

Contents

1 What is Scala & OO?

2 Objects: The Essence

3 Traits: Key of Code Reuse

4 Subtyping: The Soul
Type Bounds
Variances
Intersection & Union Types

5 Advanced Typing Features

Paul Object-Oriented Programming in Scala May 30, 2020 27 / 62

Objects as Records

An object is a collection of fields and methods, pretty much like ML’s record:

type point = { x : int, y : int };
val p = { x = 1, y = 2 };

Scala supports record types via structural typing:

type Point = { val x: Int; val y: Int }
val p: Point = new { val x = 1; val y = 2 }

Paul Object-Oriented Programming in Scala May 30, 2020 28 / 62

Inheritance, Revisited

class A
class B extends A // all members of A are also members of B, B <: A

def foo(x: A): B = ???
val (a, b) = (new A, new B)

Which of the following method invocations are allowed?

foo(a) // (1)
foo(b) // (2)
val x: B = foo(a) // (3)
val x: A = foo(a) // (4)

Observation: throwing away some “extra” information is “safe”!

Paul Object-Oriented Programming in Scala May 30, 2020 29 / 62

Type Refinement

Paul Object-Oriented Programming in Scala May 30, 2020 30 / 62

Subtype Relation

A subtyping is a pre-order relation, i.e., a binary relation that is reflexive and transitive. We
write S <: T to pronounce “S is a subtype of T”, or “T is a supertype of S”.

S-Refl
S <: S

S-Trans
S <: U U <: T

S <: T

Paul Object-Oriented Programming in Scala May 30, 2020 31 / 62

Simply-Typed Lambda Calculus with Subtyping (λ<:)

Term t ::= x | (t1t2) | (λx : T .t)

Type T ::= B | > | T1 → T2

Subtyping rules: S-Refl, S-Trans and

S-Top
S <: > S-Arrow

T1 <: S1 S2 <: T2

(S1 → S2) <: (T1 → T2)

Typing rules:

T-Var
x : T ∈ Γ
Γ ` x : T

T-Abs
Γ, x : T ` t : T ′

Γ ` (λx : T .t) : T → T ′

T-App
Γ ` t1 : T → T ′ Γ ` t2 : T

Γ ` (t1t2) : T ′ T-Sub
Γ ` t : S S <: T

Γ ` t : T

Paul Object-Oriented Programming in Scala May 30, 2020 32 / 62

Record Extension with Subtyping (λ
{}
<:)

Term t ::= · · · | {l1 = t1, . . . , ln = tn} | t.li
Type T ::= · · · | {l1 : T1, . . . , ln : Tn}

New subtyping rules:

S-RecWidth
{l1 : T1, . . . , ln : Tn, ln+1 : Tn+1, . . . , lm : Tm} <: {l1 : T1, . . . , ln : Tn}

S-RecDepth
∀i .Si <: Ti

{l1 : S1, . . . , ln : Sn} <: {l1 : T1, . . . , ln : Tn}

S-RecPerm
{k1 : S1, . . . , kn : Sn} is a permutation of {l1 : T1, . . . , ln : Tn}

{k1 : S1, . . . , kn : Sn} <: {l1 : T1, . . . , ln : Tn}

Paul Object-Oriented Programming in Scala May 30, 2020 33 / 62

Exercise Time!

How many different supertypes does {l1 : >, l2 : >} have?
Six. {l1 : >}, {l2 : >}, {}, {l1 : >, l2 : >}, {l2 : >, l1 : >}, >.

Can you find an infinite ascending chain in the subtype relation?
{} → > <: {l1 : >} → > <: {l1 : >, l2 : >} → > <: · · ·
Is there a type that is a subtype of every other type?
No. By inversion.

Is there an arrow type that is a supertype of every other arrow type?
No. If there were such an arrow type T1 → T2, then T1 would have to be a subtype of
every other type, which we have just seen is impossible.

Paul Object-Oriented Programming in Scala May 30, 2020 34 / 62

Contents

1 What is Scala & OO?

2 Objects: The Essence

3 Traits: Key of Code Reuse

4 Subtyping: The Soul
Type Bounds
Variances
Intersection & Union Types

5 Advanced Typing Features

Paul Object-Oriented Programming in Scala May 30, 2020 35 / 62

λ
{}
<: with Bottom Types

Type T ::= · · · | ⊥

New subtyping rule:
S-Bot ⊥ <: T

Remarks:

There are no closed values of type ⊥. Suppose there is one, say v , then ` v : > → >,
which is impossible.

In practice, ⊥ indicates an exception, or whatever value.

Paul Object-Oriented Programming in Scala May 30, 2020 36 / 62

Top & Bottom Types in Scala

// top
abstract class Any
class AnyRef extends Any // AnyRef = java.lang.Object
final class AnyVal extends Any

// bottom
abstract final class Nothing extends Any
def ???: Nothing = throw new NotImplementedError
def yourMethod(str: String): String = ???

Paul Object-Oriented Programming in Scala May 30, 2020 37 / 62

Class Hierarchy of Scala

Paul Object-Oriented Programming in Scala May 30, 2020 38 / 62

Type Bounds

Type parameters can be restricted to be a subtype/supertype of some type.

// Implicit conversions from a Java Array into collection.Mutable.ArrayOps
implicit def refArrayOps[T <: AnyRef](xs: Array[T]): ArrayOps[T] =

new ArrayOps.ofRef[T](xs)

// getOrElse method in Option
sealed abstract class Option[+A] extends Product with Serializable {

@inline final def getOrElse[B >: A](default: => B): B = { /* ... */ }
}

Paul Object-Oriented Programming in Scala May 30, 2020 39 / 62

Type Bounds with Structural Typing

How to implement a method using that will automatically close a resource after using it?

using(new PrintWriter("date.txt")) { writer =>
writer.println(new Date)

}

def using[T <: { def close(): Unit }, S](obj: T)(operation: T => S) = {
val result = operation(obj)
obj.close()
result

}

Paul Object-Oriented Programming in Scala May 30, 2020 40 / 62

Contents

1 What is Scala & OO?

2 Objects: The Essence

3 Traits: Key of Code Reuse

4 Subtyping: The Soul
Type Bounds
Variances
Intersection & Union Types

5 Advanced Typing Features

Paul Object-Oriented Programming in Scala May 30, 2020 41 / 62

Classification

A type constructor X is

covariant if it preserves the ordering of types (S <: T → X [S] <: X [T]);

contravariant if it reverses this ordering (S <: T → X [T] <: X [S]);

invariant if neither of the above applies.

In Scala and Java:

Variances Scala Java

Covariant +T ? extends T
Contravariant -T ? super T
Invariant T T

Paul Object-Oriented Programming in Scala May 30, 2020 42 / 62

Function Trait, Again

Recall that

S-Arrow
T1 <: S1 S2 <: T2

(S1 → S2) <: (T1 → T2)

In scala, a function is implemented as a trait

trait Function1[-T1, +R] extends AnyRef {
def apply(v1: T1): R

}

where the parameter is contravariant and the return value is covariant.

Paul Object-Oriented Programming in Scala May 30, 2020 43 / 62

Comparer

Suppose we have a comparer for comparing two objects of some class A. Then we should also
have this comparer for all the subclasses of A. Contravariant comes in rescue:

public interface IComparer<in T> {
int Compare(T left, T right);

}

Paul Object-Oriented Programming in Scala May 30, 2020 44 / 62

Sink

In real-world event-driven software systems, when an event is fired, all its “super levels” should
also be notified. To achieve this, we can declare the trait Sink as a contravariant. 1

trait Event
trait UserEvent extends Event
trait SystemEvent extends Event
trait ApplicationEvent extends SystemEvent
trait ErrorEvent extends ApplicationEvent

trait Sink[-In] { def notify(o: In) }

def appEventFired(e: ApplicationEvent, s: Sink[ApplicationEvent]) = s.notify(e)
def errorEventFired(e: ErrorEvent, s: Sink[ErrorEvent]) = s.notify(e)

1http://blog.petruescu.com/programming/types/scala-types-contravariance/
Paul Object-Oriented Programming in Scala May 30, 2020 45 / 62

Sink (Cont.)

trait SystemEventSink extends Sink[SystemEvent]
val ses = new SystemEventSink {
override def notify(o: SystemEvent): Unit = ???

}

trait GenericEventSink extends Sink[Event]
val ges = new GenericEventSink {

override def notify(o: Event): Unit = ???
}

// You can call:
appEventFired(new ApplicationEvent {}, ses)
errorEventFired(new ErrorEvent {}, ges)
appEventFired(new ApplicationEvent {}, ges)

Paul Object-Oriented Programming in Scala May 30, 2020 46 / 62

Contents

1 What is Scala & OO?

2 Objects: The Essence

3 Traits: Key of Code Reuse

4 Subtyping: The Soul
Type Bounds
Variances
Intersection & Union Types

5 Advanced Typing Features

Paul Object-Oriented Programming in Scala May 30, 2020 47 / 62

Motivation

A type can be interpreted as a set, which contains all closed values of that type.

Since we have intersection and union operations on sets, can we add them to types?

Paul Object-Oriented Programming in Scala May 30, 2020 48 / 62

Intersection Types

The inhabitants of an intersection type T1 ∩ T2 are terms belonging to both T1 and T2:

S-∩Proj1
T1 ∩ T2 <: T1

S-∩Proj2
T1 ∩ T2 <: T2

S-∩Form
S <: T1 S <: T2

S <: T1 ∩ T2

Remark: in words of lattice theory, ∩ is a meet operator.

Paul Object-Oriented Programming in Scala May 30, 2020 49 / 62

Intersection Types in Scala 3

trait Resettable { def reset(): this.type }
trait Growable[T] { def add(x: T): this.type }
def f(x: Resettable & Growable[String]) = {
x.reset()
x.add("first")

}

trait A { def children: List[A] }
trait B { def children: List[B] }
class C extends A with B {

def children: List[A & B] = ???
}
val x: A & B = new C
val ys: List[A & B] = x.children
// Since List is covariant, List[A] & List[B] = List[A & B]

Paul Object-Oriented Programming in Scala May 30, 2020 50 / 62

Union Types

The inhabitants of a union type T1 ∪T2 are terms belonging to either T1 or T2, formulated by
the following subtyping rules:

S-∩Form1
T1 <: T1 ∪ T2

S-∩Form2
T2 <: T1 ∪ T2

S-∩Proj
T1 <: S T2 <: S

T1 ∪ T2 <: S

Remark: in words of lattice theory, ∪ is a join operator.

Paul Object-Oriented Programming in Scala May 30, 2020 51 / 62

Union Types in Scala 3

trait Light
case object Red extends Light
case object Yellow extends Light
case object Green extends Light

type Ready = Red.type | Yellow.type

def foo(x: Ready) = x match {
case Red => ???
case Yellow => ???

}

Paul Object-Oriented Programming in Scala May 30, 2020 52 / 62

Contents

1 What is Scala & OO?

2 Objects: The Essence

3 Traits: Key of Code Reuse

4 Subtyping: The Soul
Type Bounds
Variances
Intersection & Union Types

5 Advanced Typing Features

Paul Object-Oriented Programming in Scala May 30, 2020 53 / 62

Path-Dependent Types

import scala.collection.mutable

case class Board(length: Int, height: Int) {
case class Coordinate(x: Int, y: Int) {

require(0 <= x && x < length && 0 <= y && y < height)
}
val occupied = scala.collection.mutable.Set[Coordinate]()

}

val b1 = Board(20, 20) b1.occupied += c2 // not compile
val b2 = Board(30, 30) val b3: b1.type = b1
val c1 = b1.Coordinate(15, 15) val c3 = b3.Coordinate(10, 10)
val c2 = b2.Coordinate(25, 25) b1.occupied += c3 // compiles
b1.occupied += c1
b2.occupied += c2

Paul Object-Oriented Programming in Scala May 30, 2020 54 / 62

Type Projection

In the above example, how can I manipulate a Coordinate of an arbitrary Board?

def distance(c: Board#Coordinate) = Math.sqrt(c.x * c.x + c.y * c.y)
def distance(c1: Board#Coordinate, c2: Board#Coordinate) = {

val dx = c1.x - c2.x
val dy = c1.y - c2.y
Math.sqrt(dx * dx + dy * dy)

}

distance(c1)
distance(c2)
distance(c1, c2)

Paul Object-Oriented Programming in Scala May 30, 2020 55 / 62

Type Members

Like methods and fields, types can also be a member of a class/object/trait:

abstract class Value {
type T
val value: T

}

class IntValue(override val value: Int) extends Value { type T = Int }
class StringValue(override val value: String) extends Value { type T = String }

type ValueList = List[Value]

Paul Object-Oriented Programming in Scala May 30, 2020 56 / 62

Higher-Kinded Types

Higher-kinded types are also called type constructors because they are used to construct types.

type Callback[T] = T => Unit
def id[M[_]](f: M[Int]) = f
val g = id[Callback] { x => println(x) }

// Scala 3: type lambdas
type Callback = [T] =>> (T => Unit)

Paul Object-Oriented Programming in Scala May 30, 2020 57 / 62

Foundation of Scala 3: Dependent Object Types (DOT)

While hiking together in the French alps in 2013, Martin Odersky tried to explain to
Phil Wadler why languages like Scala had foundations that were not directly related
via the Curry-Howard isomorphism to logic. This did not go over well. As you would
expect, Phil strongly disapproved. He argued that anything that was useful should
have a grounding in logic. In this paper, we try to approach this goal.

Amin, Nada, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The essence
of dependent object types. WadlerFest 2016.

Paul Object-Oriented Programming in Scala May 30, 2020 58 / 62

Take-Home Messages

Scala is not a “purely functional language”, instead, “functional guys” hate it because

it runs on the JVM,

it allows mutable data and side effects, and

the standard library has poor support for monadic programming.

OO is not the antonym of FP. Many language features can be shared:

immutable data structures,

lazy evaluation,

pattern matching,

monadic programming, etc.

OO is not a cure-all, neither is FP!

Paul Object-Oriented Programming in Scala May 30, 2020 59 / 62

OO is Much More Complex Than You Thought!

Paul Object-Oriented Programming in Scala May 30, 2020 60 / 62

Further Reading

Martin Odersky, Lex Spoon, Bill Venners. Programming in Scala, 2ed.

Joshua D. Suereth. Scala in Depth.

Nilanjan Raychaudhuri. Scala in Action.

Coursera: Functional Programming Principles in Scala

Dotty: https://dotty.epfl.ch

DOT papers on OOPSLA, FOOL, etc.

Paul Object-Oriented Programming in Scala May 30, 2020 61 / 62

https://dotty.epfl.ch

Thanks!

Q & A

Paul Object-Oriented Programming in Scala May 30, 2020 62 / 62

	What is Scala & OO?
	Objects: The Essence
	Traits: Key of Code Reuse
	Subtyping: The Soul
	Type Bounds
	Variances
	Intersection & Union Types

	Advanced Typing Features

