
“我的 Windows
Phone 果然有问题”

Modern AArch64 SoC 
UEFI + ACPI port from A to Z

Bingxing Wang (@imbushuo), 5/16/2020
imbushuo.net
Post your questions to hi(at)imbushuo.net

Also the team: Gustave Monce (@gus33000), 
ADeltaX, José Manuel Nieto (@SuperJMN), 
Googulator, CornyjK, Dj Art, Simone Franco, 
Tiger Wang and woachk

https://imbushuo.net/


Table of Contents

• Modern mobile SoC boot flow
• AArch64 UEFI Introduction
• AArch64 ACPI Introduction
• Case: Lumia 950 (XL) & Porting TianoCore
• Bonus: Nintendo Switch
• Bonus #2: hypervisor privilege escalation on MSM8994
• Feel free to ask questions at any time



Non-goal

• OS-specific driver bring-up and implementation



About me

• Final-year college student
• Site Reliability Engineer Intern @ LinkedIn

• Technically it is Microsoft

• Firmware and hardware hacks for fun
• I can’t play games well

• “外国黑客” @ ITHome



Modern mobile SoC boot flow

• Modern mobile SoC is complicated
• Rich features and connectivity
• Performance improvements every year
• When in doubt, add one more general-purpose CPU
• There are more than 12 CPUs in Snapdragon 810

• AP(Cortex A53 & A57), Modem and GNSS(QDSP6), Audio (Xtensa), 
Video(Cortex-A), GPS(Cortex-A), Power (Cortex-M)

• Boot the SoC
• Subsystems have dependencies
• Can’t boot them all at once
• Static Root of Trust & trust chain for boot security



UEFI + ACPI on AArch64



Common ARM bootstrap situation

• Platform-specific images
• No generic image for all devices

• Board init file or device tree for topology
• Because “embedded”
• No flexibility in hardware configuration

• U-Boot is a popular choice
• For very long time and it continues
• Also implemented UEFI recently: 
https://www.suse.com/media/article/UEFI_on_Top_of_U-Boot.pdf

• Enough to boot GRUB, not targets Windows yet

https://www.suse.com/media/article/UEFI_on_Top_of_U-Boot.pdf


UEFI and ACPI

• Existing (yet broken) industry standard on PC for years
• A defined set of interfaces and protocols for OS interaction

• Like BIOS interrupt on PC/AT
• Commercially introduced to ARM platform with Windows RT (ACPI 5.0)

• Linux implemented UEFI support for both AArch32 and AArch64
• Either Device Tree or ACPI for hardware description
• But Linux ARM ACPI is AArch64 exclusive

• Enhanced with AArch64 development recently
• Try UEFI on Raspberry Pi 3 and 4

• https://rpi4-uefi.dev/
• https://connect.linaro.org/resources/ltd20/ltd20-207/

https://rpi4-uefi.dev/
https://connect.linaro.org/resources/ltd20/ltd20-207/


UEFI vs. U-Boot

• U-Boot optimizes for size
• U-Boot links built-in things together for speed and size
• U-Boot features and environments can be customized
• Single file for each phase, can be stripped
• Versatile payloads

• UEFI targets generalization
• LZMA-compressed, firmware volume
• UEFI drivers are PE/COFF executables
• UEFI Drivers usually run fine on another implementation
• Most UEFI implementations have a baseline for protocols – a lot
• EFI applications





ACPI on ARM

• Hardware-reduced ACPI: just a bunch of ACPI tables
• Fixed ACPI tables and DSDT

• MADT – Generic Interrupt Controller
• GTDT – Architectural Timer
• CSRT – Vendor IP cores such as DMA controller
• IORT – IOMMU redirection table
• PPTT – Processor topology
• MCFG – PCIe MMIO
• FACS – Firmware control
• FADT – Fixed ACPI description
• …



ACPI static tables



DSDT table

• DSDT contains both topology information and optional 
program logics

• Bytecode-based DSL
• OS runs it
• Turing complete
• Memory I/O with bytecode instructions
• Capable to handle multiple OS scenarios

• Dynamic updates with SSDT tables
• Device Tree is usually a static table (with optional overlays)



A sample DSDT device 
object

• Dependency entries

• ID entries

• Cache coherency attribute for DMA

• Resource settings – MMIO, interrupt, GPIO, …

• ACPI methods – status, …

• Sub-devices



Lumia 950 (XL)

• Snapdragon 808 / 810 SoC
• Cortex A53 + A57, AArch64

• Windows Phone OS never goes 
AArch64
• EL1 runs in AArch32 mode
• But EL2 hypervisor and EL3 are 
AArch64

$ file HYP.img
HYP.img: ELF 64-bit LSB executable, ARM aarch64, 
version 1 (SYSV), statically linked, stripped



Finding Qualcomm proprietary docs…

Your NDA signing is a hall of shame



Dig into vendor blobs

https://github.com/LongSoft/UEFITool

https://github.com/LongSoft/UEFITool


Open source efforts

https://git.linaro.org/landing-teams/working/qualcomm/lk.git

https://git.linaro.org/landing-teams/working/qualcomm/lk.git


AArch64 Exception Levels

* Recently Secure EL2 (Secure partition manager) is introduced



Snapdragon 810 Boot Flow

• Boot from eMMC or UFS
• GPT-based partitioning
• Partition layout is mostly identical

• Vendor blobs partition and system partition
• SBL, Modem, DSP, Hypervisor, TrustZone Monitor, UEFI
• EFI system partition, Windows OS partition

• RPM boots from hardwired PBL, PBL loads SBL
• Final stage bootloader loads OS

• OS boots subsystems (Audio, Modem, GNSS, GPU, DSP)
• TrustZone RPC calls



Snapdragon 810 Boot Flow (cont.)



Getting code 
execution

• “OEM unlock” on Android devices
• Allows arbitrary code execution in 
EL1

• Does not allow modifying 
bootloader

• Windows Phones are locked down in 
production



Getting code execution (cont.)

• Nokia (MMO) exploit allows arbitrary flash I/O
• Qualcomm UEFI variable services exploit

• UEFI spec uses variable to report Secure Boot status
• Secure Boot status variable is expected to be volatile 
• Let’s put SecureBoot = 0 in the variable storage…
• Firmware reports Secure Boot off to Windows Boot Manager (!)
• Can’t run EFI application payloads due to additional checking

• https://github.com/ReneLergner/WPinternals
• Seize control from Windows Boot Manager

https://github.com/ReneLergner/WPinternals






Getting code execution 
(cont.)

• Windows Boot Manager initializes its own 
environment
• MMU, exception vector, …
• A struct used to describe the firmware 
context and app context

• Switch context to access UEFI services

• Secret Secure Monitor call to enter AArch64 EL1
• Secret SMC call for switching from AArch32 to 
AArch64

• Specifies entry point address and switch

• https://github.com/imbushuo/boot-shim

https://github.com/imbushuo/boot-shim






Port TianoCore to new platform 

• Toolchains
• Linaro GCC or any recent AArch64 GCC
• Clang/LLVM should work

• Platform docs and firmware layout
• Set required package properties in .DSC and .FDF file

• SEC/PEI
• ARM Trusted Firmware
• SoC-specific loaders

• DXE
• Port drivers



TianoCore/EDK2 directory structure
• Feature/Silicon support modules 

are categorized as “packages” –
ArmPkg, MdePkg, MdeModulePkg, …

• Top level packages contain 
applications, libraries and blob 
resources

• Package manifest (.DSC and .DEC) 
provides metadata information

• GUID/Protocol tokens
• C Header directories
• Config key-value pairs
• Customized tools
• …

• Firmware manifest (.FDF) 
describes FD layout

• The firmware package
• Executable



Directory 
structure (Cont.)
• In this implementation:

• ACPI table sources & blobs
• Peripheral drivers
• Support libraries
• PEI initialization code
• CI scripts
• ELF wrapper for FD file

ENTRY(_start);

SECTIONS
{

_start = 0x00200000;
. = 0x00200000;
.data : {

*(.data)
}

}



Lumia950XLPkg status

• Tracking the TianoCore master branch
• SoC devices

• Some drivers are ported from LK and the EFIDroid project
• Power Management (PMIC, RPM, Pinctrl)
• Low speed I/O (GPIO, I2C, SPI)
• High speed I/O (SDHCI, PCIe)
• FrameBuffer display

• Peripherals
• Synaptics RMI4 I2C digitizer
• Lattice iCE5LP2K bitstream uploader

• ACPI ready



Bonus: Nintendo Switch







https://www.youtube.com/watch?v=FyjPGOj0tiQ

https://www.youtube.com/watch?v=FyjPGOj0tiQ




Bonus: EL2 privilege 
escalation on MSM8994



EL2 privilege 
escalation

• On MSM8992 and MSM8994, EL2 hypervisor resides in the 
trust boundary of EL1 supervisor (aka. kernel)

• Finding the exception vector…address writable

• Let’s patch the vector table on the fly

• https://www.blackhat.com/docs/us-17/wednesday/us-17-
Bazhaniuk-BluePill-For-Your-Phone.pdf

https://www.blackhat.com/docs/us-17/wednesday/us-17-Bazhaniuk-BluePill-For-Your-Phone.pdf





