Build an Async Runtime for Rust from Scratch

Qi-An Fu
fugoes.qa@gmail.com
https://blog.fugoes.xyz

Tunight at May 9, 2020

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020

1/66

Outline

@ The Async Story
© The Coroutine Story

© Build an Async Runtime for Rust

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 2 /66

@ The Async Story

© The Coroutine Story

© Build an Async Runtime for Rust

40r «Fr <> «E=» = Q>

Long long time ago...

Serve one client with each server process (or thread)

tcp_server_fork.py

#1/usr/bin/env python3
import os, socket
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.bind(('127.0.0.1', 8080)); server.listen(1)
count = 0
while True:
client, address = server.accept()
count += 1
print (f'accepted {address}')
if os.fork() == 0:
if client.recv(6) == b'yoo!\r\n':
client.send(f'yoo {count}!\r\n'.encode())
client.close(); break
else:
client.close()

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 4/66

Long long time ago... (cont'd)

Serve one client with each server process or thread

@ Cannot handle large number of clients simultaneously.
» Stack size for each process (or thread) is 8 MiB.

> ulimit -s
8192

» Context switch between processes (or threads) is expensive.

Qi-An Fu Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

5/66

Long time ago...

Serve many clients with each server process or thread

tcp_server_select.py

#1/usr/bin/env python3
import os, socket, select
handlers = dict()

count = 0

def

def

accept_handler(x):
client, address = x.accept()
global count
count += 1
print(f'accepted {address}')
handlers[client] = client_handler_wrapper (count)
client_handler_wrapper(c):
def client_handler(x):
if x.recv(6) == b'yoo!\r\n':
x.send (f'yoo {c}!\r\n'.encode())
x.close(); handlers.pop(x)
return client_handler

Qi-An Fu Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

6/66

Long time ago... (cont'd)

Serve many clients with each server process or thread

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.bind(('127.0.0.1', 8080)); server.listen(1)

handlers[server] = accept_handler

while True:
events, _, _ = select.select(list(handlers.keys()), [1, [1)

for x in events:
handlers[x] (x)

Qi-An Fu Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

7/66

Long time ago... (cont'd)

Serve many clients with each server process or thread

@ select() could watch at most FD_SETSIZE handles.

int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

» Events are returned in readfds, writefds, and exceptfds directly.
@ poll(): A select() without the FD_SETSIZE limitation.

int poll(struct pollfd *fds, nfds_t nfds, int timeout);
struct pollfd {

int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

};

» Time complexity grows linearly with number of file descriptors to watch.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020

8/66

Long time ago... (cont'd)

Serve many clients with each server process or thread

@ epoll: A poll() with better time complexity (Linux only).

int epoll_create(int size);

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

// op = { EPOLL_CTL_ADD | EPOLL_CTL_MOD | EPOLL_CTL_DEL }

int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 9/66

Event loop

Event

@ Event source generates new events, usually it uses some OS event notification
mechanism (e.g. epoll). New events are pushed into the event queue.

@ Event loop keeps popping events from the event queue, and calling their event
handlers.

@ Event handlers could do 10 and calculations, and register new event handlers (a.k.a
callbacks).

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 10/ 66

Event loop goes multi-threaded

Separate event source, event queue, and event loop for each thread
Thread 1
Event Event
IPC
Event Event

Thread 2

IPC mechanism are provided as part of the event loop library to notify other threads’
event loops.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 11/66

Event loop goes multi-threaded (cont'd)

Separate event source, event queue, and event loop for each thread

o Library
» libev

* Reactor library in C language.
* Provide ev_async to wake up other threads' event loops.

» libuv

* Proactor library in C language.
* Provide uv_async to wake up other threads’ event loops.

@ Work imbalance problem between threads.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020

12 /66

Reactor & Proactor

@ Reactor
» Event notification mechanism provided by the OS tells when a file descriptor (e.g.
socket, pipe) has events (could read, could write, or exception).
» The event handler does the 10 task.
@ Proactor
» Event notification mechanism provided by the OS does the 10 task.
» When the event handler register new event handlers, it needs to provide 10 buffer.
» Cancellation is hard to implement correctly.
@ *nix OS usually provides reactor mechanism, while Windows OS provides proactor
mechanism (I0CP).
» Cross-platform library usually follows the proactor model for implementation
efficiency and simplicity.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 13 /66

Event loop goes multi-threaded (cont'd)

Shared event source and event queue, separate event loop for each thread

Thread 1
EventLoop | — > Event
Handler
Event Loop Event
Handler
Thread 2

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 14 /66

Event loop goes multi-threaded (cont'd)

Shared event source and event queue, separate event loop for each thread

o Library
» Asio
* Proactor library in C++ language.

* Run io_context::run() for one io_context instance in multiple threads.
* To use threads without explicit locking, use strand<>.

@ Work is balanced between threads.
» But introduce overheads for sharing event queue.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020

15 /66

But callback sucks

o Callback hell.
@ Code for handling same client is split into different callback functions.
» One thread (or process) for each client and using blocking 10 ease the
programmer’s life.
e Can we write async programs in blocking style?
» Yes! We have coroutine.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 16 / 66

@ The Async Story

© The Coroutine Story

© Build an Async Runtime for Rust

40r «Fr <> «E=» = Q>

Not so long time ago..

@ Put “operating system” scheduler in user space.

» Coroutine is just like “threads".

» When a coroutine doing “system call”, instead of trapped into the kernel, control is
given back to the user space scheduler.

» The scheduler would receive events from the event source, and give control back to

the coroutine (event loop).
e Coroutine is just cooperative “threads”.
e Coroutine has many names (in programming language):

» Resumable function (C++17).
» Generator (Python, Rust).

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 18 /66

How to speak generator in Python

https://www.python.org/dev/peps/pep-0255/

def fibonacci(m):
a, b=1, 1
if n == 0: return a
yield a
if n == 1: return b
yield b
n -= 2
while True:
a, b=D>b, a+b
if n == 0: return b
n-=1
yield b
g = fibonacci(10)
try:
for i in range(10 + 1): print(f'fibonaccil[{i}] = {next(g)}')
except Stoplteration as e:
print(e.value)

Qi-An Fu Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

19/66

https://www.python.org/dev/peps/pep-0255/

How to speak generator in Python (cont'd)

tcp_server_simple_generator.py

#!/usr/bin/env python3
import os, socket, select

handlers = dict()

def server_coroutine(server):
this = yield

count = 0
while True:
handlers[server] = this
yield
client, address = server.accept()
print (f'accepted {address}')
count += 1
g = client_coroutine(client, count); next(g); g.send(g)

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 20 /66

How to speak generator in Python (cont'd)

def client_coroutine(client, count):
this = yield

handlers[client] = this

yield

if client.recv(6) == b'yoo!\r\n':
client.send(f'yoo {count}!\r\n'.encode())

client.close()

handlers.pop(client)

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 21 /66

How to speak generator in Python (cont'd)

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.bind(('127.0.0.1', 8080)); server.listen(1)

g_server = server_coroutine(server); next(g_server); g_server.send(g_server)

while True:

events, _, _ = select.select(list(handlers.keys()), [1, [1)
for x in events:
try:

next (handlers[x])
except Stoplteration:
pass

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020

22/66

How to speak generator in Python (cont'd)

How to combine generators?
https://www.python.org/dev/peps/pep-0380/

r = yield from g

is (approximately) equivalent to

try:
for v in g:
yield v
except Stoplteration as e:
r = e.value

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 23 /66

https://www.python.org/dev/peps/pep-0380/

How to speak generator in Python (cont'd)

def wrap(g):

def

r = yield from g
print(r)
return r

fibonacci(n):
a, b=1,1
if n == 0: return a
yield a
if n ==
yield b
n-=2
while True:

a, b=Db, a+b

if n == 0: return b

n-=1

yield b

: return b

print(list (wrap(fibonacci(10))))

Qi-An Fu

Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

24/66

How to speak generator in Python (cont'd)

tcp_server_yield_from.py

#!/usr/bin/env python3
import os, socket, select

handlers = dict()

def accept(sock, g):
handlers[sock] = g
yield
handlers.pop(sock)
return sock.accept()

def recv(sock, n, g):
handlers[sock] = g
yield
handlers.pop(sock)
return sock.recv(n)

Qi-An Fu

Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

25 /66

How to speak generator in Python (cont'd)

def recv_exact(sock, n, g):
r =b"'
while n > O:
buf = yield from recv(sock, n, g)
n -= len(buf)
r += buf
return r

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 26 / 66

How to speak generator in Python (cont'd)

def

def

spawn(f, *args, *xkwargs):
g = f(xargs, **kwargs)
next (g)

g.send(g)

client_coroutine(client, count):
this = yield

msg = yield from recv_exact(client, 6, this)
if msg == b'yoo!\r\n':

client.send(f'yoo {count}!\r\n'.encode())
client.close()

Qi-An Fu Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

27 /66

How to speak generator in Python (cont'd)

def server_coroutine():
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.bind(('127.0.0.1', 8080)); server.listen(1)
this = yield

count = 0
while True:
client, address = yield from accept(server, this)
print (f'accepted {address}')
count += 1
spawn(client_coroutine, client, count)

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 28 /66

How to speak generator in Python (cont'd)

def block_on(f, *args, **xkwargs):
spawn(f, *args, **kwargs)
while True:
events, _, _ = select.select(list(handlers.keys()), [1, [1)
for x in events:
try:
next (handlers[x])
except StopIteration:
pass

block_on(server_coroutine)

Qi-An Fu Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

29/66

How to speak generator in Python (cont'd)

Define a generator as a class by “state machine”.

class Fibonacci(object):
def __init__(self, n):
self.n, self.i = n, O
self.a, self.b =1, 1

def __next__(self):
self.i += 1
if self.n == self.i - 1: raise StopIteration(self.b)
if self.i == 1: return self.a
self.a, self.b = self.b, self.a + self.b
return self.a

g = Fibonacci(10)
try:

for i in range(10 + 1): print(f'fibonaccil[{i}] = {next(g)}')
except Stoplteration as e:

print(e.value)

Qi-An Fu Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

30/66

Rust’'s Future API

@ raise StopIteration(x) = Poll::Ready(x), return = Poll::Pending.
@ _next__() = poll().

pub trait Future {

type Output;

fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>;
}

pub enum Poll<T> { Ready(T), Pending, }

impl<'a> Context<'a> {
pub fn waker(&self) -> &'a Waker { ... }
}

impl Waker {
pub fn wake(self) { ... }
}

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 31/66

Rust's Future API (cont'd)

In Python: In Rust:
def recv(sock, n, g): struct RecvFuture<'a>(bool, usize, &'a SomeSocket);
handlers[sock] = g
yield impl<'a> Future for RecvFuture<'a> {
handlers.pop(sock) type Output = Box<[u8]>;
return sock.recv(n) fn poll(mut self: Pin<&mut Self>,
cx: &mut Context<'_>) -> Poll<Self::0Output> {
if self.0 {

self.0 = false;
let g = cx.waker();
register(self.2, g.clone());
Poll::Pending

} else {
deregister(self.2);
Poll::Ready(self.2.recv(self.1))

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 32 /66

Rust's Future API (cont'd)

In Python: In Rust:
def recv_exact(sock, n, g): async fn recv_exact(sock: &SomeSocket, n: usize)
r=">b"' -> Box<[u8]> {
while n > O: let mut n = n;
buf = yield from recv(sock, n, g) let mut r = Vec::new();
n -= len(buf) while n > 0 {
r += buf let buf = RecvFuture(true, n, sock).await;
return r n -= buf.len();

r.append (&mut buf.into_vec());
¥

r.into_boxed_slice()

@ fn recv_exact() returns a Future<Output=Box<[u8]>>.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 33 /66

Rust's Future API (cont'd)

In Python:

In Rust:

def spawn(f, *args, **kwargs):

g = f(xargs, **kwargs)
next (g)
g.send(g)

fn spawn(coroutine: Future<Qutput=()>) {

unimplemented! () ;

}

Qi-An Fu

Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

34/66

Rust's Future API (cont'd)

@ Event notification mechanism.
» Receive events from OS, and call wake () for their Waker.
» Provide API for registering and deregistering events with Waker.

@ Future implementation.
» Do 10.
» Interact with the event notification mechanism if 1O is not ready.
» Could be combined with the .await syntax.

@ Executor.
» Provide the Waker's implementation, so that when Waker: :wake () is invoked,
schedule the coroutine associated with the Waker (e.g. push it into a task queue).
» Provide API for creating and running a coroutine (fn spawn(future:

Future<()>)).
» Fetch coroutine from the task queue, and invoke its pol1l() method.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 35 /66

Outline

© Build an Async Runtime for Rust

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 36 /66

Overview

https://github.com/Fugoes/yaay-rs/

@ Focus on implementation of executor (the funniest part).

» We need a struct to wrap a Future<Output=()> type as a top level task
(“coroutine”), and do dynamic dispatch to the pol1() method.

* Task in yaay-mt-runtime/src/task.rs
» We need a fast & scalable MPMC (multiple-producer multiple-consumer) queue to
schedule these tasks.
» Start some threads, each thread keeps popping tasks from the queue and poll()
these tasks.
@ Future implementation and event notification mechanism implementation are
trivial.

» yaay-mio/

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 37 /66

https://github.com/Fugoes/yaay-rs/

Event loop goes multi-threaded (revisited)

Shared event source and event queue, separate event loop for each thread

Thread 1
EventLoop | — > Event
Handler
Event Loop Event
Handler
Thread 2

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 38 /66

Multi-threading async runtime

s e . Executor

Event
Notification gse'\{lji
Mechanism Ahreac 1

@om) —‘—r) Task::poll
§ 5 Future

Implementatlon :

ker::wake()

Task Loop —-—-> Task::poll()

Thread 2

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020

39/66

Future<Output=()> wrapper

@ How does Rust do dynamic dispatch?
» Fat pointer.

struct TraitObjectRef {
data: *const DataType,
vtable: *comnst (),

use std::mem::size_of;
trait A { fn a(&self); }
fn main() {

dbg! (size_of::<&dyn A>()); b

dbg! (size_of::<*mut dyn A>());
dbg! (size_of::<*mut (0>(0));
}

@ How does C++ do dynamic dispatch?

struct Object {
void *vtable;
DataType data;

Qi-An Fu Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

40 /66

Future<Output=()> wrapper (cont'd)

struct Task { struct TaskVTable {
vtable: &'static TaskVTable, fn_poll: unsafe fn(NonNull<Task>,
rc: AtomicUsize, &mut Context) -> Poll<()>,
. fn_drop_in_place: unsafe fn(NonNull<Task>),
} fn_dealloc: unsafe fn(NonNull<Task>),
}
#[repr(C)]
struct TaskInner<T> .
where T: Future<Output=()> + Send { @ *mut TaskInner<T> is not fat
task: Task, pointer, and could be cast to *mut
future: T, .
} Task directly.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 41 /66

Future<Output=()> wrapper (cont'd)

Task's safety guarantee:
@ One task shouldn’t be polled concurrently by multiple worker threads.
o After a task's wake () method is invoked, eventually the task would be polled again.

@ When a task is dropped (after polled to ready, or after the runtime is shutdown),
the task's wake () method should still be safe to invoke.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 42 /66

Future<Output=()> wrapper (cont'd)

struct Task {
<
status: AtomicU8,

.

}
impl Task {
const MUTED: u8 = 1;
const NOTIFIED: u8 = Self::MUTED << 1;
const DROPPED: u8 = Self::NOTIFIED << 1;
}

Qi-An Fu Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

43 /66

MPMC queue

Mutex protected single linked list

struct Task {

.
next: *mut Task,

. ey

@ No memory allocation when operating the linked list.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 44 /66

Why mutex? Why not go lock-free?

@ Lock-free queues are hard to implement correctly.
@ Lock-free does not mean fast.

» For a mutex protected single linked list, each operation involves only two memory
load and store, while a lock-free queue needs to implement its own memory
management schema, and each operation is much more expensive.

» Linked list is memory allocation free, while a fast crossbeam: : queue: : SegQueue
involves memory allocation during push. But we are writing a runtime.

@ With mutex, more complicate scheduling algorithm could be implemented.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 45 /66

MPMC queue: naive approach

A shared mutex protected single linked list.
@ Thread safety is guaranteed.
@ Not scalable.

» The throughput (lock/unlock operations per second) for the mutex has an upper
bound.

» So that the throughput of the MPMC queue is bounded by the mutex's throughput
bound.

» Cannot improve the upper bound by adding new threads to the runtime.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 46 / 66

MPMC queue: improved naive approach

One mutex protected single linked list per thread as its local queue.
@ Thread safety is guaranteed.

@ Scalable.
@ Work imbalance problem between threads.
» Solution 0 (Work-sharing): when some thread finds its local queue is too full, share

tasks to other threads’ local queue.
» Solution 1 (Work-stealing): when some thread finds its local queue is empty, try

stealing tasks from other threads’ local queue.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 47 / 66

MPMC queue: Work-sharing vs. Work-stealing

@ Work-sharing X
» When all threads find its local queue too full, they would share tasks to other
threads’ local queue and make things even worse.
o Work-stealing v/

» When all threads are busy, no overhead.
» When some thread local queue is empty, it would consume other threads’' task, and
improve the total efficiency.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 48 /66

MPMC queue: termination detection

@ What if all threads' local queue is empty?
» All threads would try stealing tasks from others forever.
» Need to detect the termination.

@ Termination detecting barriers.

» The Art of Multiprocessor Programming. Chapter 17, Barriers. Section 17.6,
Termination Detecting Barriers.

public interface TDBarrier {
void setActive(boolean state);
boolean isTerminated();

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020

49/66

Termination detecting barriers

public class SimpleTDBarrier implements TDBarrier {
AtomicInteger count;

public SimpleTDBarrier(int n){
count = new AtomicInteger(n);

}

public void setActive(boolean active) {
if (active) {
count .getAndDecrement () ;
} else {
count .getAndIncrement () ;

}

public boolean isTerminated() {
return count.get() == 0;
}
}

Qi-An Fu

Build an Async Runtime for Rust from Scratch

public void run() {
int me = ThreadID.get();
tdBarrier.setActive (true);
Runnable task = queue[me].popBottom();
while (true) {
while (task != null) {
task.run();
task = queue[me].popBottom();
}
tdBarrier.setActive(false);
while (task == null) {
int victim = random.nextInt() % queue.length;
if (!queuelvictim].isEmpty()) {
tdBarrier.setActive(true);
task = queue[victim].popTop();
if (task == null) {
tdBarrier.setActive(false);
¥
¥
if (tdBarrier.isTerminated()) {
return;
¥
¥
¥
¥

Tunight at May 9, 2020

50 /66

Termination detecting barriers (cont'd)

@ This termination detecting barriers algorithm is one shot.
» Key idea: keep an active counter.

@ Under the use case of async runtime, there would always be new tasks pushed to
these local queues, so we cannot directly adopt the original termination detecting
barriers.

@ Solution

» Keep an active counter & an epoch counter.
» When new events happen, new tasks are pushed into local queues, and the epoch
counter are increased.
» Threads go to sleep only when both:
@ The active counter as a termination detecting barriers shows termination.
@ The epoch counter does not change.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 51 /66

Epoch termination detecting barriers

#[repr(align(64))]
pub(crate) struct Epoch(AtomicU32);

const ACTIVE_COUNT_BITS: u32 = 9;

const ACTIVE_COUNT_MASK: u32 = !(((!(0 as u32)) >> ACTIVE_COUNT_BITS) << ACTIVE_COUNT_BITS);
const EPOCH: u32 = (1 as u32) << ACTIVE_COUNT_BITS;

const MAX_DURATION: Duration = Duration::from_micros(1_000);

impl Epoch {
fn active_count(status: u32) -> u32 { status & ACTIVE_COUNT_MASK }
fn epoch(status: u32) -> u32 { status >> ACTIVE_COUNT_BITS }

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 52 /66

Epoch termination detecting barriers (cont'd)

impl Epoch {
fn get_instant(&self) -> Instant { Instant::now() }
fn get_status(&self) -> u32 { self.0.load(SeqCst) }

fn set_active(&self) -> u32 {
let status = self.0.fetch_add(l, SeqCst);
if Epoch::active_count(status) == 0 { self.wake_all_slow(); };
status + 1

fn set_inactive(&self) -> u32 { self.0.fetch_sub(l, SeqCst) - 1 }

fn wait_next_epoch(&self, old_status: u32, old_instant: Instant) {
if self.0.load(SeqCst) == old_status { self.wait_slow(old_status, old_instant); };

fn next_epoch(&self) {
let status = self.0.fetch_add(EPOCH, SeqCst);
if Epoch::active_count(status) == 0 { self.wake_all_slow(); };

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020

53/66

Epoch: :wait_slow() & Epoch::wake all slow()

@ Epoch::wait_slow(old_status, old_instant) would:

@ Check if self.0 has changed (using CAS), and if not,

© Check if the elapsed time from 0ld_instant is longer than MAX_DURATION, and if
not,

© Block current thread and wait for wake up using OS API (e.g. futex API).

@ Epoch::wake_all_slow() would wake up all blocking threads (if any) using OS
API (e.g. futex API).

@ Calls to these two function have a single total order (approximately as if the body
of these two functions are protected by a same mutex).

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 54 /66

Epoch termination detecting barriers: usage

loop {
// drain the local queue until it is empty
let mut old_instant = epoch.get_instant();
let mut old_status = epoch.set_inactive();
loop {

}

if Epoch::active_count(old_status) ==
// recheck the local queue is empty
// if not empty, break

// LO
// L1
// L2

// L3
// L4
// L5

epoch.wait_next_epoch(old_status, old_instant); // L6

} else {
// try stealing task
// if succeed, break
s
// try pop from local queue
// if succeed, break
old_instant = epoch.get_instant();
old_status = epoch.get_status();

epoch.set_active();

// L7
// L8

// L9

// L10
// L11
// L12

// L13

Qi-An Fu

Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

55 /66

Epoch termination detecting barriers: no deadlock

Lemma A: If some threads is blocked on L6, and current active_count is not 0, these
threads would be unblocked eventually.

loop {
// drain the local queue until it is empty
let mut old_instant = epoch.get_instant();
let mut old_status = epoch.set_inactive();
loop {
if Epoch::active_count(old_status) == 0
// recheck the local queue is empty
// if not empty, break

// LO
// L1
// L2

// L3
// L4
// L5

epoch.wait_next_epoch(old_status, old_instant); // L6

} else {
// try stealing task
// if succeed, break
}
// try pop from local queue
// if succeed, break
old_instant = epoch.get_instant();
old_status = epoch.get_status();
}

epoch.set_active();

// LT
// L8

// L9

// L10
// L11
// L12

// L13

Qi-An Fu

Why we could say current active_count? Because it
is atomic.

Proof: Assume some threads are blocked on L6 and
active_count is not 0 at time ty. According to L3, at
some time ¢ < ty, the active_count is 0. Assume t; is
the largest ¢ at when the active_count is 0, so that
between t; and {y, one thread would call
set_active() to set active_count from 0 to 1.
According to the implementation of set_active(), it
would invoke wake_all_slow() when set
active_count from 0 to 1. So eventually, this
wake_all_slow() would unblock these threads.

Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 56 / 66

Epoch termination detecting barriers: no deadlock (cont'd)

Lemma B: If some threads are blocked on L6 when some one invokes
epoch.next_epoch(), these threads would be unblocked eventually.

Proof:
loop {
// drain the local queue until it is empty // LO . .
let mut old_instant = epoch.get_instant(); // L1 o If ePOCh'neXt—epOCh() fOUnd actlve_count IS
jet mt old_status - epoch.set_inactive(); /712 not 0, according to lemma A, all worker threads
loop
if Epoch::active_count(old_status) == 0 // L3 would be unblocked eVentUa”y.
// recheck the local queue is empty // L4
// if not empty, break // L5 . .
epoch.wait_next_epoch(old_status, old_instant); // L6 g If ePOCh'neXt—ePOCh() fOUnd aCthe_COunt IS
}else { 0, it would invoke wake_all_slow() so that
// try stealing task // LT ! - -
// if succeed, break // 18 these threads would be unblocked eventually.
}
// try pop from local queue // L9
// if succeed, break // L10
old_instant = epoch.get_instant(); // L11
old_status = epoch.get_status(); // L12
}
epoch.set_active(); // L13

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 57 /66

Epoch termination detecting barriers: no deadlock (cont'd)

Lemma C: After some one invokes epoch.next_epoch(), all worker threads would
eventually check its local queue.

Proof: According to lemma B, we only need to

1 { . .
% drain the local queue until it is empty s/ 10 consider those running worker threads when some one
let mut old_instant = epoch.get_instant(); // L1 H
let mut old_status = epoch.set_inactive(); // L2 |nV0keS ePOCh'neXt—ePOCh() .
loop { . . .
if Epoch: :active_count(old_status) == 0 // 13 © If a thread is between L5 and L6, it would failed
// heck the 1 l i t // L . .
) it met empty, break Y e to enter blocking state, so that it would
N zllngh{wait_next_epoch(old_status, old_instant); // L6 eVentUa“y Check |ts Iocal qUeUe.
// try stealing task // LT i i
// if succeed, break 7/ 18 @ |If a thread is not between L5 and L6, it would
} .
7/ try pop from local queue T eventually check its local queue.
// if succeed, break // L10
old_instant = epoch.get_instant(); // L11
old_status = epoch.get_status(); // L12
}
epoch.set_active(); // L13

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 58 /66

Epoch termination detecting barriers: no deadlock (cont'd)

Lemma D (no deadlock): When all threads are blocked on L6, all local queues are

empty.

loop {
// drain the local queue until it is empty
let mut old_instant = epoch.get_instant();
let mut old_status = epoch.set_inactive();
loop {
if Epoch::active_count(old_status) == 0
// recheck the local queue is empty
// if not empty, break

// LO
// L1
// L2

// L3
// L4
// L5

epoch.wait_next_epoch(old_status, old_instant); // L6

} else {
// try stealing task
// if succeed, break
}
// try pop from local queue
// if succeed, break
old_instant = epoch.get_instant();
old_status = epoch.get_status();
}

epoch.set_active();

// LT
// L8

// L9

// L10
// L11
// L12

// L13

Qi-An Fu

Proof: Assume when all threads are blocked on L6 at
to, and some local queues is not empty at %), some task
called task is in some queue q. When push(task),
epoch_next_epoch() is invoked at time #;. So that
after ¢y, all worker threads would eventually check its
local queue by lemma C (# > #). When q's owner
thread checking its local queue, it would find task and
pop it. Contradiction!

Lemma D tells us when some local queues are not
empty, some threads are running, so the system could
make progress (a.k.a no deadlock).

Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 59 /66

Epoch termination detecting barriers: no deadlock (cont'd)

loop {

}

// drain the local queue until it is empty
let mut old_instant = epoch.get_instant();
let mut old_status = epoch.set_inactive();
loop {
if Epoch::active_count(old_status) == 0
// recheck the local queue is empty
// if not empty, break

// LO
// L1
// L2

// L3
// L4
// L5

epoch.wait_next_epoch(old_status, old_instant); // L6

} else {
// try stealing task
// if succeed, break
¥
// try pop from local queue
// if succeed, break
old_instant = epoch.get_instant();
old_status = epoch.get_status();
}

epoch.set_active();

// L7
// L8

// L9

// L10
// L11
// L12

// L13

Qi-An Fu

Please note that lemma C is wrong when the epoch
overflows to exactly same number before L6 (the
proof's (1) would be wrong). This is avoided by
checking time elapsed. If the o1d_instant is
MAX_DURATION earlier, the wait_next_epoch()
method won't block. For a 23 bits unsigned integer
epoch to overflow to same number, the next_epoch()
needs to be invoked 8388608 times, which at least
requires 8388608 atomic fetch_add (EPOCH)
operations. Hopefully it should take longer than 1000
us.

The key for this proof is that, the worker needs to
guarantee rechecking local queue before try to
wait_next_epoch(). Optimization keeping this
property could be applied without breaking the proof.

Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 60 /66

MPMC queue

@ So finally we got a MPMC queue that,

» Scalable.
» (Maybe) Correct (Safe & No deadlock).
» Give up CPU time when no task.

@ Should be called “MPMC pool™.
» Not FIFO.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 61 /66

How wait slow() & wake all slow() work

impl Epoch {
fn wait_slow(&self, old_status: u32, old_instant: Instant) {
let key = &self.0 as *const AtomicU32 as usize;
let validate = move || {
unsafe {
let ptr = key as *const AtomicU32;
let result = (*ptr).compare_exchange_weak(old_status, old_status, SeqCst, Relaxed);
if result.is_err() { return false; };
if old_instant.elapsed() > MAX_DURATION { return false; };
return true;
}
};
unsafe { park(key, validate, || {}, |_, _| {}, ParkToken(0), None) };
}
fn wake_all_slow(&self) {
let key = &self.0 as *const AtomicU32 as usize;
unsafe { unpark_all(key, UnparkToken(0)) };

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 62 /66

parking lot::park() & parking lot::unpark_all()

@ parking lot is a crate wrapping all platforms’ synchronization API. It provides an
interface similar to Linux's futex ().

» Linux: futex().
» Windows: WaitOnAddress().
» Others: pthread_mutex_t and pthread_cond_t.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 63 /66

Linux: futex()

Two basic operations, WAIT and WAKE.

@ WAIT(addr, wval)
If the value stored at the address addr is val, puts the current thread to block.

@ WAKE(addr, num)
Wakes up num number of threads waiting on the address addr.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 64 /66

Windows: WaitOnAddress()

Similar to futex().

BOOL WaitOnAddress(
volatile VOID #*Address,

PVOID CompareAddress,
SIZE_T AddressSize,

DWORD dwMilliseconds
);

void WakeByAddressAll(
PVOID Address
)s

void WakeByAddressSingle(
PVOID Address
)5

Qi-An Fu Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

65 /66

Others: pthread mutex t and pthread cond_t.

A futex() like API could be implemented using mutex and condition variable.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 66 /66

	The Async Story
	The Coroutine Story
	Build an Async Runtime for Rust

