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Long long time ago...

Serve one client with each server process (or thread)

tcp_server_fork.py

#1/usr/bin/env python3
import os, socket
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.bind(('127.0.0.1', 8080)); server.listen(1)
count = 0
while True:
client, address = server.accept()
count += 1
print (f'accepted {address}')
if os.fork() == 0:
if client.recv(6) == b'yoo!\r\n':
client.send(f'yoo {count}!\r\n'.encode())
client.close(); break
else:
client.close()
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Long long time ago... (cont'd)

Serve one client with each server process or thread

@ Cannot handle large number of clients simultaneously.
» Stack size for each process (or thread) is 8 MiB.

> ulimit -s
8192

» Context switch between processes (or threads) is expensive.
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Long time ago...

Serve many clients with each server process or thread

tcp_server_select.py

#1/usr/bin/env python3
import os, socket, select
handlers = dict()

count = 0

def

def

accept_handler(x):
client, address = x.accept()
global count
count += 1
print(f'accepted {address}')
handlers[client] = client_handler_wrapper (count)
client_handler_wrapper(c):
def client_handler(x):
if x.recv(6) == b'yoo!\r\n':
x.send (f'yoo {c}!\r\n'.encode())
x.close(); handlers.pop(x)
return client_handler

Qi-An Fu Build an Async Runtime for Rust from Scratch

Tunight at May 9, 2020

6/66



Long time ago... (cont'd)

Serve many clients with each server process or thread

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.bind(('127.0.0.1', 8080)); server.listen(1)

handlers[server] = accept_handler

while True:
events, _, _ = select.select(list(handlers.keys()), [1, [1)

for x in events:
handlers[x] (x)
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Long time ago... (cont'd)

Serve many clients with each server process or thread

@ select() could watch at most FD_SETSIZE handles.

int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

» Events are returned in readfds, writefds, and exceptfds directly.
@ poll(): A select() without the FD_SETSIZE limitation.

int poll(struct pollfd *fds, nfds_t nfds, int timeout);
struct pollfd {

int  fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

};

» Time complexity grows linearly with number of file descriptors to watch.
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Long time ago... (cont'd)

Serve many clients with each server process or thread

@ epoll: A poll() with better time complexity (Linux only).

int epoll_create(int size);

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

// op = { EPOLL_CTL_ADD | EPOLL_CTL_MOD | EPOLL_CTL_DEL }

int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);
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Event loop

Event

@ Event source generates new events, usually it uses some OS event notification
mechanism (e.g. epoll). New events are pushed into the event queue.

@ Event loop keeps popping events from the event queue, and calling their event
handlers.

@ Event handlers could do 10 and calculations, and register new event handlers (a.k.a
callbacks).
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Event loop goes multi-threaded

Separate event source, event queue, and event loop for each thread
Thread 1
Event Event
IPC
Event Event

Thread 2

IPC mechanism are provided as part of the event loop library to notify other threads’
event loops.
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Event loop goes multi-threaded (cont'd)

Separate event source, event queue, and event loop for each thread

o Library
» libev

* Reactor library in C language.
* Provide ev_async to wake up other threads' event loops.

» libuv

* Proactor library in C language.
* Provide uv_async to wake up other threads’ event loops.

@ Work imbalance problem between threads.
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Reactor & Proactor

@ Reactor
» Event notification mechanism provided by the OS tells when a file descriptor (e.g.
socket, pipe) has events (could read, could write, or exception).
» The event handler does the 10 task.
@ Proactor
» Event notification mechanism provided by the OS does the 10 task.
» When the event handler register new event handlers, it needs to provide 10 buffer.
» Cancellation is hard to implement correctly.
@ *nix OS usually provides reactor mechanism, while Windows OS provides proactor
mechanism (I0CP).
» Cross-platform library usually follows the proactor model for implementation
efficiency and simplicity.
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Event loop goes multi-threaded (cont'd)

Shared event source and event queue, separate event loop for each thread

Thread 1
EventLoop | — > Event
Handler
Event Loop Event
Handler
Thread 2
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Event loop goes multi-threaded (cont'd)

Shared event source and event queue, separate event loop for each thread

o Library
» Asio
* Proactor library in C++ language.

* Run io_context::run() for one io_context instance in multiple threads.
* To use threads without explicit locking, use strand<>.

@ Work is balanced between threads.
» But introduce overheads for sharing event queue.
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But callback sucks

o Callback hell.
@ Code for handling same client is split into different callback functions.
» One thread (or process) for each client and using blocking 10 ease the
programmer’s life.
e Can we write async programs in blocking style?
» Yes! We have coroutine.
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Not so long time ago..

@ Put “operating system” scheduler in user space.

» Coroutine is just like “threads".

» When a coroutine doing “system call”, instead of trapped into the kernel, control is
given back to the user space scheduler.

» The scheduler would receive events from the event source, and give control back to

the coroutine (event loop).
e Coroutine is just cooperative “threads”.
e Coroutine has many names (in programming language):

» Resumable function (C++17).
» Generator (Python, Rust).
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How to speak generator in Python

https://www.python.org/dev/peps/pep-0255/

def fibonacci(m):
a, b=1, 1
if n == 0: return a
yield a
if n == 1: return b
yield b
n -= 2
while True:
a, b=D>b, a+b
if n == 0: return b
n-=1
yield b
g = fibonacci(10)
try:
for i in range(10 + 1): print(f'fibonaccil[{i}] = {next(g)}')
except Stoplteration as e:
print(e.value)
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How to speak generator in Python (cont'd)

tcp_server_simple_generator.py

#!/usr/bin/env python3
import os, socket, select

handlers = dict()

def server_coroutine(server):
this = yield

count = 0
while True:
handlers[server] = this
yield
client, address = server.accept()
print (f'accepted {address}')
count += 1
g = client_coroutine(client, count); next(g); g.send(g)
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How to speak generator in Python (cont'd)

def client_coroutine(client, count):
this = yield

handlers[client] = this

yield

if client.recv(6) == b'yoo!\r\n':
client.send(f'yoo {count}!\r\n'.encode())

client.close()

handlers.pop(client)

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 21 /66



How to speak generator in Python (cont'd)

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.bind(('127.0.0.1', 8080)); server.listen(1)

g_server = server_coroutine(server); next(g_server); g_server.send(g_server)

while True:

events, _, _ = select.select(list(handlers.keys()), [1, [1)
for x in events:
try:

next (handlers[x])
except Stoplteration:
pass
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How to speak generator in Python (cont'd)

How to combine generators?
https://www.python.org/dev/peps/pep-0380/

r = yield from g

is (approximately) equivalent to

try:
for v in g:
yield v
except Stoplteration as e:
r = e.value
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How to speak generator in Python (cont'd)

def wrap(g):

def

r = yield from g
print(r)
return r

fibonacci(n):
a, b=1,1
if n == 0: return a
yield a
if n ==
yield b
n-=2
while True:

a, b=Db, a+b

if n == 0: return b

n-=1

yield b

: return b

print(list (wrap(fibonacci(10))))
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How to speak generator in Python (cont'd)

tcp_server_yield_from.py

#!/usr/bin/env python3
import os, socket, select

handlers = dict()

def accept(sock, g):
handlers[sock] = g
yield
handlers.pop(sock)
return sock.accept()

def recv(sock, n, g):
handlers[sock] = g
yield
handlers.pop(sock)
return sock.recv(n)
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How to speak generator in Python (cont'd)

def recv_exact(sock, n, g):
r =b"'
while n > O:
buf = yield from recv(sock, n, g)
n -= len(buf)
r += buf
return r
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How to speak generator in Python (cont'd)

def

def

spawn(f, *args, *xkwargs):
g = f(xargs, **kwargs)
next (g)

g.send(g)

client_coroutine(client, count):
this = yield

msg = yield from recv_exact(client, 6, this)
if msg == b'yoo!\r\n':

client.send(f'yoo {count}!\r\n'.encode())
client.close()
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How to speak generator in Python (cont'd)

def server_coroutine():
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.bind(('127.0.0.1', 8080)); server.listen(1)
this = yield

count = 0
while True:
client, address = yield from accept(server, this)
print (f'accepted {address}')
count += 1
spawn(client_coroutine, client, count)
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How to speak generator in Python (cont'd)

def block_on(f, *args, **xkwargs):
spawn(f, *args, **kwargs)
while True:
events, _, _ = select.select(list(handlers.keys()), [1, [1)
for x in events:
try:
next (handlers[x])
except StopIteration:
pass

block_on(server_coroutine)
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How to speak generator in Python (cont'd)

Define a generator as a class by “state machine”.

class Fibonacci(object):
def __init__(self, n):
self.n, self.i = n, O
self.a, self.b =1, 1

def __next__(self):
self.i += 1
if self.n == self.i - 1: raise StopIteration(self.b)
if self.i == 1: return self.a
self.a, self.b = self.b, self.a + self.b
return self.a

g = Fibonacci(10)
try:

for i in range(10 + 1): print(f'fibonaccil[{i}] = {next(g)}')
except Stoplteration as e:

print(e.value)
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Rust’'s Future API

@ raise StopIteration(x) = Poll::Ready(x), return = Poll::Pending.
@ _next__() = poll().

pub trait Future {

type Output;

fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>;
}

pub enum Poll<T> { Ready(T), Pending, }

impl<'a> Context<'a> {
pub fn waker(&self) -> &'a Waker { ... }
}

impl Waker {
pub fn wake(self) { ... }
}
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Rust's Future API (cont'd)

In Python: In Rust:
def recv(sock, n, g): struct RecvFuture<'a>(bool, usize, &'a SomeSocket);
handlers[sock] = g
yield impl<'a> Future for RecvFuture<'a> {
handlers.pop(sock) type Output = Box<[u8]>;
return sock.recv(n) fn poll(mut self: Pin<&mut Self>,
cx: &mut Context<'_>) -> Poll<Self::0Output> {
if self.0 {

self.0 = false;
let g = cx.waker();
register(self.2, g.clone());
Poll::Pending

} else {
deregister(self.2);
Poll::Ready(self.2.recv(self.1))
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Rust's Future API (cont'd)

In Python: In Rust:
def recv_exact(sock, n, g): async fn recv_exact(sock: &SomeSocket, n: usize)
r=">b"' -> Box<[u8]> {
while n > O: let mut n = n;
buf = yield from recv(sock, n, g) let mut r = Vec::new();
n -= len(buf) while n > 0 {
r += buf let buf = RecvFuture(true, n, sock).await;
return r n -= buf.len();

r.append (&mut buf.into_vec());
¥

r.into_boxed_slice()

@ fn recv_exact() returns a Future<Output=Box<[u8]>>.
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Rust's Future API (cont'd)

In Python:

In Rust:

def spawn(f, *args, **kwargs):

g = f(xargs, **kwargs)
next (g)
g.send(g)

fn spawn(coroutine: Future<Qutput=()>) {

unimplemented! () ;

}
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Rust's Future API (cont'd)

@ Event notification mechanism.
» Receive events from OS, and call wake () for their Waker.
» Provide API for registering and deregistering events with Waker.

@ Future implementation.
» Do 10.
» Interact with the event notification mechanism if 1O is not ready.
» Could be combined with the .await syntax.

@ Executor.
» Provide the Waker's implementation, so that when Waker: :wake () is invoked,
schedule the coroutine associated with the Waker (e.g. push it into a task queue).
» Provide API for creating and running a coroutine (fn spawn(future:

Future<()>)).
» Fetch coroutine from the task queue, and invoke its pol1l() method.
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Overview

https://github.com/Fugoes/yaay-rs/

@ Focus on implementation of executor (the funniest part).

» We need a struct to wrap a Future<Output=()> type as a top level task
(“coroutine”), and do dynamic dispatch to the pol1() method.

* Task in yaay-mt-runtime/src/task.rs
» We need a fast & scalable MPMC (multiple-producer multiple-consumer) queue to
schedule these tasks.
» Start some threads, each thread keeps popping tasks from the queue and poll()
these tasks.
@ Future implementation and event notification mechanism implementation are
trivial.

» yaay-mio/
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Event loop goes multi-threaded (revisited)

Shared event source and event queue, separate event loop for each thread

Thread 1
EventLoop | — > Event
Handler
Event Loop Event
Handler
Thread 2
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Multi-threading async runtime

s e . Executor

Event
Notification gse'\{lji
Mechanism Ahreac 1

@om) —‘—r) Task::poll
§ 5 Future

Implementatlon :

ker::wake()

Task Loop —-—-> Task::poll()

Thread 2
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Future<Output=()> wrapper

@ How does Rust do dynamic dispatch?
» Fat pointer.

struct TraitObjectRef {
data: *const DataType,
vtable: *comnst (),

use std::mem::size_of;
trait A { fn a(&self); }
fn main() {

dbg! (size_of::<&dyn A>()); b

dbg! (size_of::<*mut dyn A>());
dbg! (size_of::<*mut (0>(0));
}

@ How does C++ do dynamic dispatch?

struct Object {
void *vtable;
DataType data;
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Future<Output=()> wrapper (cont'd)

struct Task { struct TaskVTable {
vtable: &'static TaskVTable, fn_poll: unsafe fn(NonNull<Task>,
rc: AtomicUsize, &mut Context) -> Poll<()>,
. fn_drop_in_place: unsafe fn(NonNull<Task>),
} fn_dealloc: unsafe fn(NonNull<Task>),
}
#[repr(C)]
struct TaskInner<T> .
where T: Future<Output=()> + Send { @ *mut TaskInner<T> is not fat
task: Task, pointer, and could be cast to *mut
future: T, .
} Task directly.
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Future<Output=()> wrapper (cont'd)

Task's safety guarantee:
@ One task shouldn’t be polled concurrently by multiple worker threads.
o After a task's wake () method is invoked, eventually the task would be polled again.

@ When a task is dropped (after polled to ready, or after the runtime is shutdown),
the task's wake () method should still be safe to invoke.
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Future<Output=()> wrapper (cont'd)

struct Task {
<
status: AtomicU8,

.

}
impl Task {
const MUTED: u8 = 1;
const NOTIFIED: u8 = Self::MUTED << 1;
const DROPPED: u8 = Self::NOTIFIED << 1;
}
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MPMC queue

Mutex protected single linked list

struct Task {

.
next: *mut Task,

. ey

@ No memory allocation when operating the linked list.

Qi-An Fu Build an Async Runtime for Rust from Scratch Tunight at May 9, 2020 44 /66



Why mutex? Why not go lock-free?

@ Lock-free queues are hard to implement correctly.
@ Lock-free does not mean fast.

» For a mutex protected single linked list, each operation involves only two memory
load and store, while a lock-free queue needs to implement its own memory
management schema, and each operation is much more expensive.

» Linked list is memory allocation free, while a fast crossbeam: : queue: : SegQueue
involves memory allocation during push. But we are writing a runtime.

@ With mutex, more complicate scheduling algorithm could be implemented.
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MPMC queue: naive approach

A shared mutex protected single linked list.
@ Thread safety is guaranteed.
@ Not scalable.

» The throughput (lock/unlock operations per second) for the mutex has an upper
bound.

» So that the throughput of the MPMC queue is bounded by the mutex's throughput
bound.

» Cannot improve the upper bound by adding new threads to the runtime.
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MPMC queue: improved naive approach

One mutex protected single linked list per thread as its local queue.
@ Thread safety is guaranteed.

@ Scalable.
@ Work imbalance problem between threads.
» Solution 0 (Work-sharing): when some thread finds its local queue is too full, share

tasks to other threads’ local queue.
» Solution 1 (Work-stealing): when some thread finds its local queue is empty, try

stealing tasks from other threads’ local queue.
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MPMC queue: Work-sharing vs. Work-stealing

@ Work-sharing X
» When all threads find its local queue too full, they would share tasks to other
threads’ local queue and make things even worse.
o Work-stealing v/

» When all threads are busy, no overhead.
» When some thread local queue is empty, it would consume other threads’' task, and
improve the total efficiency.
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MPMC queue: termination detection

@ What if all threads' local queue is empty?
» All threads would try stealing tasks from others forever.
» Need to detect the termination.

@ Termination detecting barriers.

» The Art of Multiprocessor Programming. Chapter 17, Barriers. Section 17.6,
Termination Detecting Barriers.

public interface TDBarrier {
void setActive(boolean state);
boolean isTerminated();
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Termination detecting barriers

public class SimpleTDBarrier implements TDBarrier {
AtomicInteger count;

public SimpleTDBarrier(int n){
count = new AtomicInteger(n);

}

public void setActive(boolean active) {
if (active) {
count .getAndDecrement () ;
} else {
count .getAndIncrement () ;

}

public boolean isTerminated() {
return count.get() == 0;
}
}

Qi-An Fu
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public void run() {
int me = ThreadID.get();
tdBarrier.setActive (true);
Runnable task = queue[me].popBottom();
while (true) {
while (task != null) {
task.run();
task = queue[me].popBottom();
}
tdBarrier.setActive(false);
while (task == null) {
int victim = random.nextInt() % queue.length;
if (!queuelvictim].isEmpty()) {
tdBarrier.setActive(true);
task = queue[victim].popTop();
if (task == null) {
tdBarrier.setActive(false);
¥
¥
if (tdBarrier.isTerminated()) {
return;
¥
¥
¥
¥
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Termination detecting barriers (cont'd)

@ This termination detecting barriers algorithm is one shot.
» Key idea: keep an active counter.

@ Under the use case of async runtime, there would always be new tasks pushed to
these local queues, so we cannot directly adopt the original termination detecting
barriers.

@ Solution

» Keep an active counter & an epoch counter.
» When new events happen, new tasks are pushed into local queues, and the epoch
counter are increased.
» Threads go to sleep only when both:
@ The active counter as a termination detecting barriers shows termination.
@ The epoch counter does not change.
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Epoch termination detecting barriers

#[repr(align(64))]
pub(crate) struct Epoch(AtomicU32);

const ACTIVE_COUNT_BITS: u32 = 9;

const ACTIVE_COUNT_MASK: u32 = !(((!(0 as u32)) >> ACTIVE_COUNT_BITS) << ACTIVE_COUNT_BITS);
const EPOCH: u32 = (1 as u32) << ACTIVE_COUNT_BITS;

const MAX_DURATION: Duration = Duration::from_micros(1_000);

impl Epoch {
fn active_count(status: u32) -> u32 { status & ACTIVE_COUNT_MASK }
fn epoch(status: u32) -> u32 { status >> ACTIVE_COUNT_BITS }
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Epoch termination detecting barriers (cont'd)

impl Epoch {
fn get_instant(&self) -> Instant { Instant::now() }
fn get_status(&self) -> u32 { self.0.load(SeqCst) }

fn set_active(&self) -> u32 {
let status = self.0.fetch_add(l, SeqCst);
if Epoch::active_count(status) == 0 { self.wake_all_slow(); };
status + 1

fn set_inactive(&self) -> u32 { self.0.fetch_sub(l, SeqCst) - 1 }

fn wait_next_epoch(&self, old_status: u32, old_instant: Instant) {
if self.0.load(SeqCst) == old_status { self.wait_slow(old_status, old_instant); };

fn next_epoch(&self) {
let status = self.0.fetch_add(EPOCH, SeqCst);
if Epoch::active_count(status) == 0 { self.wake_all_slow(); };
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Epoch: :wait_slow() & Epoch::wake all slow()

@ Epoch::wait_slow(old_status, old_instant) would:

@ Check if self.0 has changed (using CAS), and if not,

© Check if the elapsed time from 0ld_instant is longer than MAX_DURATION, and if
not,

© Block current thread and wait for wake up using OS API (e.g. futex API).

@ Epoch::wake_all_slow() would wake up all blocking threads (if any) using OS
API (e.g. futex API).

@ Calls to these two function have a single total order (approximately as if the body
of these two functions are protected by a same mutex).
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Epoch termination detecting barriers: usage

loop {
// drain the local queue until it is empty
let mut old_instant = epoch.get_instant();
let mut old_status = epoch.set_inactive();
loop {

}

if Epoch::active_count(old_status) ==
// recheck the local queue is empty
// if not empty, break

// LO
// L1
// L2

// L3
// L4
// L5

epoch.wait_next_epoch(old_status, old_instant); // L6

} else {
// try stealing task
// if succeed, break
s
// try pop from local queue
// if succeed, break
old_instant = epoch.get_instant();
old_status = epoch.get_status();

epoch.set_active();

// L7
// L8

// L9

// L10
// L11
// L12

// L13

Qi-An Fu
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Epoch termination detecting barriers: no deadlock

Lemma A: If some threads is blocked on L6, and current active_count is not 0, these
threads would be unblocked eventually.

loop {
// drain the local queue until it is empty
let mut old_instant = epoch.get_instant();
let mut old_status = epoch.set_inactive();
loop {
if Epoch::active_count(old_status) == 0
// recheck the local queue is empty
// if not empty, break

// LO
// L1
// L2

// L3
// L4
// L5

epoch.wait_next_epoch(old_status, old_instant); // L6

} else {
// try stealing task
// if succeed, break
}
// try pop from local queue
// if succeed, break
old_instant = epoch.get_instant();
old_status = epoch.get_status();
}

epoch.set_active();

// LT
// L8

// L9

// L10
// L11
// L12

// L13

Qi-An Fu

Why we could say current active_count? Because it
is atomic.

Proof: Assume some threads are blocked on L6 and
active_count is not 0 at time ty. According to L3, at
some time ¢ < ty, the active_count is 0. Assume t; is
the largest ¢ at when the active_count is 0, so that
between t; and {y, one thread would call
set_active() to set active_count from 0 to 1.
According to the implementation of set_active(), it
would invoke wake_all_slow() when set
active_count from 0 to 1. So eventually, this
wake_all_slow() would unblock these threads.
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Epoch termination detecting barriers: no deadlock (cont'd)

Lemma B: If some threads are blocked on L6 when some one invokes
epoch.next_epoch(), these threads would be unblocked eventually.

Proof:
loop {
// drain the local queue until it is empty // LO . .
let mut old_instant = epoch.get_instant(); // L1 o If ePOCh'neXt—epOCh() fOUnd actlve_count IS
jet mt old_status - epoch.set_inactive(); /712 not 0, according to lemma A, all worker threads
loop
if Epoch::active_count(old_status) == 0 // L3 would be unblocked eVentUa”y.
// recheck the local queue is empty // L4
// if not empty, break // L5 . .
epoch.wait_next_epoch(old_status, old_instant); // L6 g If ePOCh'neXt—ePOCh() fOUnd aCthe_COunt IS
}else { 0, it would invoke wake_all_slow() so that
// try stealing task // LT ! - -
// if succeed, break // 18 these threads would be unblocked eventually.
}
// try pop from local queue // L9
// if succeed, break // L10
old_instant = epoch.get_instant(); // L11
old_status = epoch.get_status(); // L12
}
epoch.set_active(); // L13
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Epoch termination detecting barriers: no deadlock (cont'd)

Lemma C: After some one invokes epoch.next_epoch(), all worker threads would
eventually check its local queue.

Proof: According to lemma B, we only need to

1 { . .
% drain the local queue until it is empty s/ 10 consider those running worker threads when some one
let mut old_instant = epoch.get_instant(); // L1 H
let mut old_status = epoch.set_inactive(); // L2 |nV0keS ePOCh'neXt—ePOCh() .
loop { . . .
if Epoch: :active_count(old_status) == 0 // 13 © If a thread is between L5 and L6, it would failed
// heck the 1 l i t // L . .
) it met empty, break Y e to enter blocking state, so that it would
N zllngh{wait_next_epoch(old_status, old_instant); // L6 eVentUa“y Check |ts Iocal qUeUe.
// try stealing task // LT i i
// if succeed, break 7/ 18 @ |If a thread is not between L5 and L6, it would
} .
7/ try pop from local queue T eventually check its local queue.
// if succeed, break // L10
old_instant = epoch.get_instant(); // L11
old_status = epoch.get_status(); // L12
}
epoch.set_active(); // L13
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Epoch termination detecting barriers: no deadlock (cont'd)

Lemma D (no deadlock): When all threads are blocked on L6, all local queues are

empty.

loop {
// drain the local queue until it is empty
let mut old_instant = epoch.get_instant();
let mut old_status = epoch.set_inactive();
loop {
if Epoch::active_count(old_status) == 0
// recheck the local queue is empty
// if not empty, break

// LO
// L1
// L2

// L3
// L4
// L5

epoch.wait_next_epoch(old_status, old_instant); // L6

} else {
// try stealing task
// if succeed, break
}
// try pop from local queue
// if succeed, break
old_instant = epoch.get_instant();
old_status = epoch.get_status();
}

epoch.set_active();

// LT
// L8

// L9

// L10
// L11
// L12

// L13

Qi-An Fu

Proof: Assume when all threads are blocked on L6 at
to, and some local queues is not empty at %), some task
called task is in some queue q. When push(task),
epoch_next_epoch() is invoked at time #;. So that
after ¢y, all worker threads would eventually check its
local queue by lemma C (# > #). When q's owner
thread checking its local queue, it would find task and
pop it. Contradiction!

Lemma D tells us when some local queues are not
empty, some threads are running, so the system could
make progress (a.k.a no deadlock).
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Epoch termination detecting barriers: no deadlock (cont'd)

loop {

}

// drain the local queue until it is empty
let mut old_instant = epoch.get_instant();
let mut old_status = epoch.set_inactive();
loop {
if Epoch::active_count(old_status) == 0
// recheck the local queue is empty
// if not empty, break

// LO
// L1
// L2

// L3
// L4
// L5

epoch.wait_next_epoch(old_status, old_instant); // L6

} else {
// try stealing task
// if succeed, break
¥
// try pop from local queue
// if succeed, break
old_instant = epoch.get_instant();
old_status = epoch.get_status();
}

epoch.set_active();

// L7
// L8

// L9

// L10
// L11
// L12

// L13

Qi-An Fu

Please note that lemma C is wrong when the epoch
overflows to exactly same number before L6 (the
proof's (1) would be wrong). This is avoided by
checking time elapsed. If the o1d_instant is
MAX_DURATION earlier, the wait_next_epoch()
method won't block. For a 23 bits unsigned integer
epoch to overflow to same number, the next_epoch()
needs to be invoked 8388608 times, which at least
requires 8388608 atomic fetch_add (EPOCH)
operations. Hopefully it should take longer than 1000
us.

The key for this proof is that, the worker needs to
guarantee rechecking local queue before try to
wait_next_epoch(). Optimization keeping this
property could be applied without breaking the proof.
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MPMC queue

@ So finally we got a MPMC queue that,

» Scalable.
» (Maybe) Correct (Safe & No deadlock).
» Give up CPU time when no task.

@ Should be called “MPMC pool™.
» Not FIFO.
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How wait slow() & wake all slow() work

impl Epoch {
fn wait_slow(&self, old_status: u32, old_instant: Instant) {
let key = &self.0 as *const AtomicU32 as usize;
let validate = move || {
unsafe {
let ptr = key as *const AtomicU32;
let result = (*ptr).compare_exchange_weak(old_status, old_status, SeqCst, Relaxed);
if result.is_err() { return false; };
if old_instant.elapsed() > MAX_DURATION { return false; };
return true;
}
};
unsafe { park(key, validate, || {}, |_, _| {}, ParkToken(0), None) };
}
fn wake_all_slow(&self) {
let key = &self.0 as *const AtomicU32 as usize;
unsafe { unpark_all(key, UnparkToken(0)) };
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parking lot::park() & parking lot::unpark_all()

@ parking lot is a crate wrapping all platforms’ synchronization API. It provides an
interface similar to Linux's futex ().

» Linux: futex().
» Windows: WaitOnAddress().
» Others: pthread_mutex_t and pthread_cond_t.
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Linux: futex()

Two basic operations, WAIT and WAKE.

@ WAIT(addr, wval)
If the value stored at the address addr is val, puts the current thread to block.

@ WAKE(addr, num)
Wakes up num number of threads waiting on the address addr.
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Windows: WaitOnAddress()

Similar to futex().

BOOL WaitOnAddress(
volatile VOID #*Address,

PVOID CompareAddress,
SIZE_T AddressSize,

DWORD dwMilliseconds
);

void WakeByAddressAll(
PVOID Address
)s

void WakeByAddressSingle(
PVOID Address
)5
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Others: pthread mutex t and pthread cond_t.

A futex() like API could be implemented using mutex and condition variable.
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