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Dijkstra’s mutual exclusion algorithm

The first distributed algorithm (year 1965).
Shared memory model

▶ Atomic read/write register
▶ Fix number of processes

Mutual exclusion (safety): multiple processes share a resource, only one can enter
a piece of code called critical section.
Progress (liveness): if some processes want to enter the critical section, then
eventually some process enters the critical section.
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Dijkstra’s mutual exclusion algorithm (cont’d)

n processes labeled with 1, 2, · · · , n
Shared (atomic) variables

▶ status[1..n] ∈ { IDLE, GET_TURN, CHECK }, initially all set to IDLE.
▶ turn ∈ {1, 2, · · · , n}, initially arbitrary.

For process i (with local variable j):

L0 status[i] = GET_TURN
L1 repeat
L2 while turn != i do if status[turn] == IDLE then turn = i
L3 status[i] = CHECK
L4 for j != i do if status[j] == CHECK then status[i] = GET_TURN
L5 until status[i] == CHECK
L6 { critical section }
L7 status[i] = IDLE
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Correctness: mutual exclusion
Safety

L0 status[i] = GET_TURN
L1 repeat
L2 while turn != i do if status[turn] == IDLE then turn = i
L3 status[i] = CHECK
L4 for j != i do if status[j] == CHECK then status[i] = GET_TURN
L5 until status[i] == CHECK
L6 { critical section }
L7 status[i] = IDLE

Proof by contradiction: Assume there are two processes labeled a and b both inside L6
at some time t0.

At some time t1 < t0, a executes L3, after which a enters L6 successfully.
At some time t2 < t0, b executes L3, after which b enters L6 successfully.
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Correctness: mutual exclusion (cont’d)
Safety

L0 status[i] = GET_TURN
L1 repeat
L2 while turn != i do if status[turn] == IDLE then turn = i
L3 status[i] = CHECK
L4 for j != i do if status[j] == CHECK then status[i] = GET_TURN
L5 until status[i] == CHECK
L6 { critical section }
L7 status[i] = IDLE

Without loss of generality, assume t1 < t2.
b would find status[a] == CHECK inside L4 loop, so b would set status[b] to
GET_TURN in L4, which makes the condition in L5 not true.
b would not enter L6. Contradiction!
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Correctness: progress
Liveness

L0 status[i] = GET_TURN
L1 repeat
L2 while turn != i do if status[turn] == IDLE then turn = i
L3 status[i] = CHECK
L4 for j != i do if status[j] == CHECK then status[i] = GET_TURN
L5 until status[i] == CHECK
L6 { critical section }
L7 status[i] = IDLE

Proof by contradiction: Assume there won’t be any process successfully entering L6
after t0 (We set t0 to the earliest time satisfying the assumption).

At some time t1 > t0, status[turn] == IDLE.
After some time t2 > t1, all processes who wants to enter L6 will have status of
either GET_TURN or CHECK.

Qi-An Fu Mutual Exclusion in Shared-memory Systems Tunight at November 9, 2019 8 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Correctness: progress (cont’d)
Liveness

L0 status[i] = GET_TURN
L1 repeat
L2 while turn != i do if status[turn] == IDLE then turn = i
L3 status[i] = CHECK
L4 for j != i do if status[j] == CHECK then status[i] = GET_TURN
L5 until status[i] == CHECK
L6 { critical section }
L7 status[i] = IDLE

After t2, turn won’t change.
After t2, turn points to some process i who wants to enter L6.
After t2, process i would eventually enters L6, since all other processes who wants
to enter L6 are stuck in the L2 loop. Contradiction!
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However

What is the model of computation?
What is time point?
What is after?
What is shared variables?
What is local variables?
What is atomic?
…
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1 Dijkstra’s mutual exclusion algorithm

2 Shared-memory model

3 From theory to practice
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Shared memory model: Shared object

A shared memory unit is called a shared object, which has:
Values
Operations (could have return values, and could change the object’s value)
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Examples of shared object

Read/write register R
▶ Values: integers (bounded?)
▶ Operations: read(R), write(R, v)

⋆ read(R) returns the current value of R, write(R, v) has no return value.
⋆ read(R) does not change the value, write(R, v) change the value of R to v.

Single-writer/multi-reader register
▶ Only one process can write, others can read.

Multi-writer/multi-reader register
▶ All processes can read/write to the register.
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Shared memory model: Process

n processes p1, p2, . . . , pn

Each process has a (possibly infinite) state machine.
Each process has a set of states, one of which is the initial state.
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Shared memory model: Process (cont’d)

A set of state variables var1, var2, … are used to represent states (local variables).
Each state q corresponds to a particular set of values of the state variables, q.var1,
q.var2, … (function evaluation).
Each state q has a special field q.wait ∈ {TRUE, FALSE}, initially FALSE:

▶ TRUE: q is waiting for an operation on a shared object to complete.
Each state q of process p has three special fields:

▶ q.obj: the object to be accessed next (could be null).
▶ q.op: the operation on q.obj to be executed.
▶ q.in: the input parameter (if any) of the q.op.
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Shared memory model: Configuration

Configuration C of the system: states of all processes and values of all shared
objects

▶ (q1, . . . , qn, v1, . . . , vm).
▶ qi is the state of process pi.
▶ vj is the value of object oj.

Initial Configuration: All processes are in their initial states and all objects contain
their initial values.
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Shared memory model: Computation steps

When p takes a step in a normal state (a.k.a p’s state q satisfy q.wait is FALSE):
▶ Communication step: If q.obj is not null.

⋆ Process p invoke operation q.op on q.obj with the input value q.in (if any)
⋆ p transitions to a new state q’, where q’.wait is TRUE.

▶ Local computation step: If q.obj is null.
⋆ p transitions to a new state q’, where q’.wait is FALSE.

When p takes a step in a waiting state (a.k.a p’s state q satisfy q.wait is TRUE):
▶ Return from the invocation step: p takes the response v from the operation q.op on

q.obj with parameter q.in, and p transitions to a new state q’, where q’.wait is
FALSE.
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Shared memory model: Executions

Execution: C0, s1,C1, s2,C2, s3,C3, . . .
▶ Step sj is on configuration Cj−1.
▶ Application of sj to Cj−1 results in Cj.
▶ C0 is the initial configuration.
▶ Could be finite or infinite.
▶ Asynchronous: the number of steps between the two steps of the same process is

not bounded.
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Shared memory model: Summary

Shared object access takes time.
Each step is one of:

▶ Communication step.
▶ Local computation step.
▶ Return from the invocation step.

Computation is a sequence of steps that changes configurations.
Processes are asynchronous.
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Recall the proof

Time point ⇔ Configuration
After some time point ⇔ Configurations following some configuration
Local variables
Shared variables

▶ Atomic?
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Atomic single-writer/multi-reader register

Values: integers (bounded?)
Operations: Read() -> v and Write(v)
All Read()s and Write(v)s can be made in a sequential order.
If operation o1 completes before operation o2 starts, then o1 is ordered before o2
in the sequential order.
In the sequential order, the semantics of reads and writes are preserved, i.e. a read
returns the latest written value before the read.
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Atomic single-writer/multi-reader register (cont’d)

time/configuration

P1

P2
Write(2)

Read()->2

Write(3)

Read()->3 Read()->3

time/configuration

P1

P2
Write(2)

Read()->3

Write(3)

Read()->2 Read()->3

Figure: The first one is atomic, while the second one is not atomic.
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Mutual exclusion problem

The algorithm needs to satisfy the following properties:
Mutual exclusion: In every configuration of every execution, at most one process is
in the critical section.
Progress (no deadlock): In every execution, if some process is in the trying section
in a configuration, then there is a later configuration in which some process is in
the critical section.

Addition useful properties:
No lockout (no starvation): In every execution, if some process is in the trying
section in a configuration, then there is a later configuration in which the same
process is in the critical section.

Qi-An Fu Mutual Exclusion in Shared-memory Systems Tunight at November 9, 2019 23 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dijkstra’s mutual exclusion algorithm (revisited)

Multi-reader multi-writer atomic register (bounded).
Mutual exclusion.
Progress.
Starvation.
Use one n-valued atomic register, and n 3-valued atomic registers.
The paper Bounds on Shared Memory for Mutual Exclusion in 1993 shows that:

▶ Algorithms that solves the mutual exclusion problem with atomic registers should
use at least as many shared atomic registers as processes number n.

▶ There exists some algorithm with n shared atomic registers that solves the problem
and these registers are 1-bit.

▶ So that n 1-bit atomic registers is the tight lower bound for this problem.
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Outline

1 Dijkstra’s mutual exclusion algorithm

2 Shared-memory model

3 From theory to practice
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C++11’s new feature <atomic>

#include <atomic>
// For C11: #include <stdatomic.h>
// For Rust: use std::sync::atomic;
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Let’s code in C++: The Header
dijkstra.hpp

#ifndef DIJKSTRA_HPP
#define DIJKSTRA_HPP

#include <atomic>

struct Dijkstra {
static const int N = 4, IDLE = 0, GET_TURN = 1, CHECK = 2;
struct alignas(64) Status { std::atomic_int v_{IDLE}; };

alignas(64) std::atomic_int turn_{0};
alignas(64) Status status_[N];

void lock(int p);
void unlock(int p);

};

#endif //DIJKSTRA_HPP

Qi-An Fu Mutual Exclusion in Shared-memory Systems Tunight at November 9, 2019 27 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Let’s code in C++: The Header (cont’d)

The magic number explained (false sharing)

> getconf LEVEL1_DCACHE_LINESIZE
64

C++!

// since C++17
#include <new>
std::hardware_destructive_interference_size;
std::hardware_constructive_interference_size;
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How to test

test_dijkstra.cpp

#include <cstdio>
#include <thread>
#include "dijkstra.hpp"

int main() {
std::thread ts[Dijkstra::N];
Dijkstra lock;
std::atomic_flag flag = ATOMIC_FLAG_INIT;
for (int i = 0; i < Dijkstra::N; i++) {

ts[i] = std::thread([i, &lock, &flag] {
for (int k = 0; k < 10000000; k++) {

lock.lock(i);

if (flag.test_and_set(
std::memory_order_acquire)) {

printf("ERROR\n");
std::exit(-1);

}
flag.clear(std::memory_order_release);
lock.unlock(i);

}
});

}
for (auto &t: ts) t.join();
printf("PASS\n");
return 0;

}
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Dijkstra’s algorithm made wrong

dijkstra_wrong.cpp

#include "dijkstra.hpp"
void Dijkstra::lock(int p) {

status_[p].v_.store(
GET_TURN, std::memory_order_release);

for (;;) {
for (;;) {

auto turn = turn_.load(
std::memory_order_acquire);

if (turn == p) break;
auto status = status_[turn].v_.load(

std::memory_order_acquire);
if (status == IDLE) turn_.store(p,

std::memory_order_release);
}
status_[p].v_.store(

CHECK, std::memory_order_release);

bool success = true;
for (int i = 0; i < N; i++) {

if (i == p) continue;
auto status = status_[i].v_.load(

std::memory_order_acquire);
if (status == CHECK) {

status_[p].v_.store(
GET_TURN, std::memory_order_release);

success = false; break;
}

}
if (success) return;

}
}
void Dijkstra::unlock(int p) {

status_[p].v_.store(
IDLE, std::memory_order_release);

}
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Dijkstra’s algorithm made correct

dijkstra.cpp

#include "dijkstra.hpp"
void Dijkstra::lock(int p) {

status_[p].v_.store(
GET_TURN, std::memory_order_release);

for (;;) {
for (;;) {

auto turn = turn_.load(
std::memory_order_acquire);

if (turn == p) break;
auto status = status_[turn].v_.load(

std::memory_order_acquire);
if (status == IDLE) turn_.store(p,

std::memory_order_release);
}
status_[p].v_.store(

CHECK, std::memory_order_seq_cst);

bool success = true;
for (int i = 0; i < N; i++) {

if (i == p) continue;
auto status = status_[i].v_.load(

std::memory_order_seq_cst);
if (status == CHECK) {

status_[p].v_.store(
GET_TURN, std::memory_order_release);

success = false; break;
}

}
if (success) return;

}
}
void Dijkstra::unlock(int p) {

status_[p].v_.store(
IDLE, std::memory_order_release);

}
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From theory to practice: Memory order in C++

#include <atomic>
std::memory_order_acquire;
std::memory_order_release;
std::memory_order_seq_cst;
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From theory to practice: Memory order in C++ (cont’d)
Acquire and release

Initially X == 0 and Y == 0

Thread 1 Thread 2
============== ==============
X.store(1) Y.load()
Y.store(1) X.load()

If Y.load() returns 1, then X.load() returns 1.
Y.load() -> 1, X.load() -> 0 not possible.
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From theory to practice: Memory order in C++ (cont’d)
Acquire and release

Thread 1 Thread 2
============== ==============
X.store(1)
Y.store(1) }-- release

\
\
\
\
\

acquire ->{ Y.load() -> 1
X.load() -> 1
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From theory to practice: Memory order in C++ (cont’d)
Acquire and release

std::memory_order_acquire: A load operation with this memory order per-
forms the acquire operation on the affected memory location: no reads or writes
in the current thread can be reordered before this load. All writes in other
threads that release the same atomic variable are visible in the current thread.
std::memory_order_release: A store operation with this memory order
performs the release operation: no reads or writes in the current thread can be
reordered after this store. All writes in the current thread are visible in other
threads that acquire the same atomic variable and writes that carry a depen-
dency into the atomic variable become visible in other threads that consume
the same atomic.
— https://en.cppreference.com/w/cpp/atomic/memory_order
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From theory to practice: Memory order in C++ (cont’d)
Acquire and release

Is load(std::memory_order_acquire) and store(std::memory_order_release)
atomic? No
Initially X == 0:

Thread 1 Thread 2
============== ==============
X.store(1)

X.load() -> 0

No violation of acquire/release memory order.
Not atomic.
Acquire/release is not enough for Dijkstra’s algorithm’s safety property.
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From theory to practice: Memory order in C++ (cont’d)
Sequentially-consistent

std::memory_order_seq_cst: Atomic operations tagged
memory_order_seq_cst not only order memory the same way as re-
lease/acquire ordering, but also establish a single total modification order of
all atomic operations that are so tagged.
— https://en.cppreference.com/w/cpp/atomic/memory_order

load(std::memory_order_seq_cst) and
store(std::memory_order_seq_cst) is atomic.
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Correctness: mutual exclusion (revisited)
Safety

L0 status[i] = GET_TURN
L1 repeat
L2 while turn != i do if status[turn] == IDLE then turn = i
L3 status[i] = CHECK
L4 for j != i do if status[j] == CHECK then status[i] = GET_TURN
L5 until status[i] == CHECK
L6 { critical section }
L7 status[i] = IDLE

In the correct implementation dijkstra.cpp, the store(status[i], CHECK) in
L3 is atomic, the load(status[j]) in L4 is also atomic.
The proof of safety property only relies on these two atomic operations.
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Correctness: progress (revisited)
Liveness

L0 status[i] = GET_TURN
L1 repeat
L2 while turn != i do if status[turn] == IDLE then turn = i
L3 status[i] = CHECK
L4 for j != i do if status[j] == CHECK then status[i] = GET_TURN
L5 until status[i] == CHECK
L6 { critical section }
L7 status[i] = IDLE

Note that all requirements are state in ’at some time’, ’after some time’.
Acquire/release operations guarantee local writes would be visible globally
eventually.
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Let’s read the assembly!

<Dijkstra::lock(int)>:
0: movslq %esi,%rcx
3: lea 0x40(%rdi),%r9
7: add $0x1,%rcx
b: shl $0x6,%rcx
f: add %rdi,%rcx

12: movl $0x1,(%rcx)
18: movslq (%rdi),%rax
1b: cmp %eax,%esi
1d: je 40 <Dijkstra::lock(int)+0x40>
1f: add $0x1,%rax
23: shl $0x6,%rax
27: add %rdi,%rax
2a: mov (%rax),%eax
2c: test %eax,%eax
2e: jne 18 <Dijkstra::lock(int)+0x18>
30: mov %esi,(%rdi)
32: movslq (%rdi),%rax
35: cmp %eax,%esi
37: jne 1f <Dijkstra::lock(int)+0x1f>
39: nopl 0x0(%rax)
40: mov %r9,%rdx
43: xor %eax,%eax
45: movl $0x2,(%rcx)
4b: mfence

4e: cmp %eax,%esi
50: je 5b <Dijkstra::lock(int)+0x5b>
52: mov (%rdx),%r8d
55: cmp $0x2,%r8d
59: je 70 <Dijkstra::lock(int)+0x70>
5b: add $0x1,%eax
5e: add $0x40,%rdx
62: cmp $0x4,%eax
65: jne 4e <Dijkstra::lock(int)+0x4e>
67: retq
68: nopl 0x0(%rax,%rax,1)
6f:
70: movl $0x1,(%rcx)
76: jmp 18 <Dijkstra::lock(int)+0x18>
78: nopl 0x0(%rax,%rax,1)
7f:

<Dijkstra::unlock(int)>:
80: movslq %esi,%rsi
83: add $0x1,%rsi
87: shl $0x6,%rsi
8b: add %rsi,%rdi
8e: movl $0x0,(%rdi)
94: retq
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From theory to practice: Memory order on x86_64
In a multiple-processor system, the following ordering principles apply:

Individual processors use the same ordering principles as in a
single-processor system.
Writes by a single processor are observed in the same order by all
processors.
Writes from an individual processor are NOT ordered with respect to the
writes from other processors.
Memory ordering obeys causality (memory ordering respects transitive
visibility).
Any two stores are seen in a consistent order by processors other than
those performing the stores.
Locked instructions have a total order.

— Intel 64 and IA-32 Architectures Software Developer’s Manual
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Go beyond

mutex in libc (Linux kernel): use CAS and futex.
Fast path: CAS in user space
Under contention:

▶ Exponential back off
⋆ pause instruction
⋆ https://code.woboq.org/userspace/glibc/sysdeps/generic/adaptive_

spin_count.h.html
⋆ https://www.gnu.org/software/libc/manual/html_node/Tunables.html
⋆ https://aloiskraus.wordpress.com/2018/06/16/

why-skylakex-cpus-are-sometimes-50-slower-how-intel-has-broken-existing-code/
▶ futex wait
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Reading materials

Intel 64 and IA-32 Architectures Software Developer’s Manual (Vol. 3A 8.2
Memory Ordering)
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://en.cppreference.com/w/cpp/atomic/memory_order
The Art of Multiprocessor Programming
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