
Write You a Compiler for Great Fun!
(Tunight Talk)

Paul MashPlant

October 19, 2019

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 1 / 53

Tonight

1 Compiler Construction

2 New Decaf Compilers
Java v.s. Scala Versions
Rust Version

3 Decaf’s Road Ahead

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 2 / 53

Contents

1 Compiler Construction

2 New Decaf Compilers
Java v.s. Scala Versions
Rust Version

3 Decaf’s Road Ahead

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 3 / 53

What can Compilers Do?

Generate machine code

Run your programs

Optimize your programs

Analyze your programs

etc.

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 4 / 53

World is Changing

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 5 / 53

Compilers are ...

NOT JUST compilers, BUT ALSO

optimizers

shells (Read-Evaluate-Print Loop)

analyzers (lint)

databases

verifiers

synthesizers

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 6 / 53

How to Construct a Compiler?

For some:

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 7 / 53

How to Construct a Compiler?

For Martin Odersky and Scala team:

scala -Xshow-phases

Guess: how may phases?

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 8 / 53

How to Construct a Compiler?

For LLVM fans:

Intermediate Representation bridges everything

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 9 / 53

How to Construct a Compiler?

For students who enrolls the Decaf project:

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 10 / 53

Multiple Phases/Passes

parser ←− PL1/TCS2

type checker/synthesizer ←− PL/logic
desugar/transformation ←− PL
IR generation ←− PL
IR optimization ←− SE3/system
instruction optimization ←− system/architecture
assembler ←− architecture

Compiler is cross-disciplinary!

1Programming Languges
2Theoretical Computer Science
3Software Engineering

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 11 / 53

Contents

1 Compiler Construction

2 New Decaf Compilers
Java v.s. Scala Versions
Rust Version

3 Decaf’s Road Ahead

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 12 / 53

Decaf?

Decaffeination is the removal of caffeine from coffee beans, co-
coa, tea leaves, and other caffeine-containing materials. Decaf-
feinated products are commonly termed decaf.

– https://en.wikipedia.org/wiki/Decaffeination

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 13 / 53

https://en.wikipedia.org/wiki/Decaffeination

Logo

ecaf
https://git.tsinghua.edu.cn/decaf-lang/decaf-logo

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 14 / 53

https://git.tsinghua.edu.cn/decaf-lang/decaf-logo

Star Our Repos!

https://github.com/decaf-lang

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 15 / 53

https://github.com/decaf-lang

Lines of Code4

Java: 10335 (*.java)

Scala: 5176 (*.scala) + 5260 (*.java) = 10436

Rust: 4862 (*.rs)

4Excluding empty lines.
Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 16 / 53

Contents

1 Compiler Construction

2 New Decaf Compilers
Java v.s. Scala Versions
Rust Version

3 Decaf’s Road Ahead

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 17 / 53

jflex + jacc v.s. antlr4

Lines of grammar specification5:

jflex + jacc: 126

antlr4: 80

Example:

/* jacc */
TopLevel : ClassList;
ClassList : ClassList ClassDef | ClassDef;
ClassDef : CLASS Id ExtendsClause '{' FieldList '}';
ExtendsClause : EXTENDS Id | ;
FieldList : FieldList Var ';' | FieldList MethodDef | ;
/* antlr4 */
topLevel : classDef*;
classDef : CLASS id extendsClause? '{' field* '}';
extendsClause : EXTENDS id;
field : varDef | methodDef;

5Only grammar lines are computed. Data comes from PA1-A doc.
Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 18 / 53

Parser Combinators?

In a very early commit of the Scala version:

class StmtParsers extends ExprParsers {
def typed = positioned(typ ˜ id ˆˆ ???)
def localVarDef = positioned(typed <˜! SEMI ˆˆ ???)
def block = positioned(LBRACE ˜>! stmt.* <˜ RBRACE ˆˆ ???)
def ifStmt = positioned { IF ˜>!

(LPAREN ˜> expr <˜ RPAREN) ˜ stmt ˜ (ELSE ˜>! stmt).? ˆˆ ??? }
def whileStmt = positioned { WHILE ˜>! expr ˜ stmt ˆˆ ??? }
def breakStmt = positioned { BREAK ˜! SEMI ˆˆˆ ??? }
def returnStmt = positioned { RETURN ˜>! expr.? <˜ SEMI ˆˆ ??? }
/* ... */
def controlStmt = ifStmt | whileStmt | breakStmt | ...
def stmt = block | localVarDef | controlStmt

}

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 19 / 53

https://github.com/decaf-lang/decaf-in-scala/commit/a5c829034c3a9eab4b3ee9b741d0e675fecbc56f

What’s Wrong with Combinators?

Manually tweak lexing:

The “evil” left-recursion and left-factor.

Why not try generalized LL parser combinators?

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 20 / 53

Don’t Trust Your IDE!

False negative:

False positive: code that can pass the linter may NOT type check due to
implicit conversions, variances (e.g. java.util.List is not covariant), etc.

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 21 / 53

ASTs with Annotations

/* template */
trait TreeTmpl {
type ExprAnnot <: Annot
trait Expr extends Node with Annotated[ExprAnnot]
case class Binary(op: BinaryOp, lhs: Expr, rhs: Expr)

(implicit val annot: ExprAnnot) extends Expr
}
/* syntax tree */
implicit object NoAnnot extends Annot
object SyntaxTree extends TreeTmpl {

type ExprAnnot = NoAnnot.type
}
/* typed tree */
object TypedTree extends TreeTmpl {

type ExprAnnot = Type
}

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 22 / 53

Pattern Matching ...

To implement an expression evaluator, using pattern matching:

sealed abstract class Expr
case class Add(lhs: Expr, rhs: Expr) extends Expr
case class Sub(lhs: Expr, rhs: Expr) extends Expr
case class Number(value: Int) extends Expr

def eval(expr: Expr): Int = expr match {
case Add(l, r) => eval(l) + eval(r)
case Sub(l, r) => eval(l) - eval(r)
case Number(v) => v

}

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 23 / 53

... v.s. Visitors I

To do the same in Java, using visitors:

interface ExprVisitor<T> {
T visitAdd(Add e);
T visitSub(Sub e);
T visitNumber(Number e);

}

abstract class Expr {
abstract <T> T accept(ExprVisitor<T> v);

}

class Add extends Expr {
Expr lhs; Expr rhs;
@Override <T> T accept(ExprVisitor<T> v) {

return v.visitAdd(this); }
}
/* Similar for Sub and Number */

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 24 / 53

... v.s. Visitors II

class EvalVisitor implements ExprVisitor<Integer> {
@Override int visitAdd(Add e) {

var l = e.lhs.accept(this);
var r = e.rhs.accept(this);
return l + r;

} /* Similar for visitSub */

@Override int visitNumber(Number e) {
return e.value;

}
}

int eval(Expr expr) {
var v = new EvalVisitor();
return expr.accept(v);

}

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 25 / 53

Why Visitors?

Because Java does NOT support pattern matching!

If a language supports pattern matching, then visitors are NOT
necessary!

Good news: Rust version is 100% visitors free. In scala version,
visitors are ONLY used to call Java code.

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 26 / 53

What’s Wrong with Java?

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 27 / 53

What’s Wrong with Java?

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 28 / 53

On Design Pattern

Examples:

visitor pattern

(abstract) factory pattern

builder pattern

monad pattern

My opinions:

Design patterns are “bad” design.

Design patterns are NOT needed if the language feature already
include this.

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 29 / 53

Case Classes ...

Express algebraic data types via case classes:

trait BasicBlock[I <: PseudoInstr] extends Iterable[Loc[I]]
case class ContinuousBasicBlock[I <: PseudoInstr](...)

extends BasicBlock[I]
case class EndByJumpBasicBlock[I <: PseudoInstr](...)

extends BasicBlock[I]
case class EndByCondJumpBasicBlock[I <: PseudoInstr](...)

extends BasicBlock[I]
case class EndByReturnBasicBlock[I <: PseudoInstr](...)

extends BasicBlock[I]

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 30 / 53

... v.s. Kind Enum

Express algebraic data types via enum and kind:

public class BasicBlock<I extends PseudoInstr> implements
Iterable<Loc<I>> {
public enum Kind {

CONTINUOUS, END_BY_JUMP, END_BY_COND_JUMP, END_BY_RETURN
}
public final Kind kind;
/* ... */

}

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 31 / 53

“Be Pure or Impure?”

Even in Java we can be pure:

public static class LoadVTbl extends TacInstr {
public final Temp dst;
public final VTable vtbl;
/* ... */

}

Even in a functional language like Scala we can be impure:

class Context {
val global: GlobalScope = new GlobalScope
val classes: mutable.Map[String, ClassDef] = new mutable.TreeMap

}

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 32 / 53

Running Time

Table: Total execution time on old test sets.

Phase Java Scala

PA1-A 3.88 s 12.99 s
PA2 8.84 s 27.34 s
PA3 5.94 s 18.20 s
PA5 6.99 s 19.36 s

Scala is much slower than Java!

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 33 / 53

Core of CS?

We’ve just discussed:

Parser generator v.s. combinator?

Design patterns v.s. language features?

Pure v.s. impure?

Efficient v.s. expressive?

Tradeoff!

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 34 / 53

Core of PL?

Neither programming nor language, but design!

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 35 / 53

For Fun: Java v.s. Scala

Which one has a “better” design?

In my opinion:

Java is compiler-friendly, but Scala is programmer-friendly.

Scala teaches your more OO than Java.

Java is for the past, but Scala is for the future.

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 36 / 53

Contents

1 Compiler Construction

2 New Decaf Compilers
Java v.s. Scala Versions
Rust Version

3 Decaf’s Road Ahead

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 37 / 53

Parser Generator: re2dfa + lalr1 I

Thanks to Rust’s procedural macro, we can write a parser without any
external config file, via MashPlant’s toolchains:

#[lalr1(Expr)]
#[lex(r#"
priority = [

{ assoc = 'left', terms = ['Add'] },
{ assoc = 'left', terms = ['Mul'] }

]

[lexical]
'\+' = 'Add'
'*' = 'Mul'
'\d+' = 'IntLit'
'\s+' = '_Eps'
"#)]

impl Parser {

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 38 / 53

Parser Generator: re2dfa + lalr1 II

#[rule(Expr -> Expr Add Expr)]
fn expr_add(l: i32, _op: Token, r: i32) -> i32 { l + r }

#[rule(Expr -> Expr Mul Expr)]
fn expr_mul(l: i32, _op: Token, r: i32) -> i32 { l * r }

#[rule(Expr -> IntLit)]
fn expr_int(i: Token) -> i32 { str::from_utf8(i.piece)

.unwrap().parse().unwrap() }
}

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 39 / 53

jflex + jacc v.s. antlr4 v.s. re2dfa + lalr1

All codes related to lexer & parser6:

Java: 390 (parsing/*.java) + 481 (Decaf.jacc + Decaf.jflex) =
871

Scala: 363 (parsing/*.scala) + 260 (antlr4/) = 623

Rust: 373 (syntax/src/lib.rs + syntax/src/parser.rs)

. . . maybe this is somewhat biased, because I (MashPlant) like to compress
lines of code when coding.

6Not including generated code & comment & blank lines.
Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 40 / 53

Parser Generator: re2dfa + lalr1

Other Features:

strongly-typed parser

zero-copy

IDE support (limited but still quite useful)

dump all kinds of tables for debugging

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 41 / 53

Case Classes v.s. Tagged Union

Rust’s enum is essentially a tagged union.

Efficient v.s. expressive? It is easy to have both in Rust:
I to match a Scala’s case class: instanceof + checkcast + athrow

(JVM instructions)
I to match a Rust’s enum: jump table

Knowing this can dispel my concern about performance when writing
high-level code.

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 42 / 53

Fight against Borrow Checker

How to write a linked list in Rust?

pub struct Tac<'a> {
pub payload: RefCell<TacPayload>,
pub prev: Cell<Option<&'a Tac<'a>>>,
pub next: Cell<Option<&'a Tac<'a>>>,

}
// still need the help of Arena memory allocator

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 43 / 53

Running Time

Table: Total execution time on old test sets.

Phase Java Scala Rust

PA1-A 3.88 s 12.99 s 0.11 s
PA2 8.84 s 27.34 s 0.11 s
PA3 5.94 s 18.20 s 0.12 s
PA5 6.99 s 19.36 s 0.27 s

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 44 / 53

For Fun: Java v.s. Scala v.s. Rust

Java is compiler-friendly.

Scala is programmer-friendly.

Rust is neither, but ONLY WHEN you fail to get your code compiled.

Table: Build time.

Version Command Seconds

Java gradle build 5.852
Scala sbt compile 24.049 (compile 15)
Rust cargo build 261.29

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 45 / 53

Contents

1 Compiler Construction

2 New Decaf Compilers
Java v.s. Scala Versions
Rust Version

3 Decaf’s Road Ahead

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 46 / 53

Missing Features of Decaf

method override (18’ optional)

exception handler (18’ optional)

local type inference (18’ & 19’ mandatory)

first-class functions (18’ optional & 19’ mandatory)

package and module

toolchains

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 47 / 53

Call for Toolchains!

syntax highlighter

REPL

linter

debugger

language server

IDE plugins

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 48 / 53

TAC7 Virtual Machine

Already have: built-in simulator

Hope to do:
I TAC language standard (semantics, bytecode, etc.)
I TAC program debugger
I a “real” virtual machine (with garbage collection)

7Three-Address Code
Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 49 / 53

Call for Backends!

RISC-V

x86

etc.

LLVM to rule ’em all!

vecaf (verified decaf): constraint solving-based program verifier

secaf (sketched decaf): sketch-based program synthesizer

etc.

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 50 / 53

Weaknesses of Decaf

package and module

type system

OO system

redundant grammar

Difficult to overcome these based upon the current version!

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 51 / 53

In Future: Faced

A new language for education, for research and for fun!

statically-typed with a rich type system

functional & OO

adaptive syntax

JVM, CLR and native (LLVM)

Goals:

write less, synthesize more

productive & type-safe

Beginning: like Scala, but more independent from JVM

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 52 / 53

Thanks!

Q & A

Paul, MashPlant Write You a Compiler for Great Fun! October 19, 2019 53 / 53

	Compiler Construction
	New Decaf Compilers
	Java v.s. Scala Versions
	Rust Version

	Decaf's Road Ahead

