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Abstract

This document briefly describes parallel execution in GNU APL

Configuration

Parallel execution of APL primitives needs to be ./configure'd explicitly. Without 
such configuration GNU APL executes sequentially. In freshly installed GNU APL 
sources (i.e. after an SVN checkout or after unpacking the GNU APL tar file), the 
configuration is:

./configure --enable-maintainer-mode            \
            VALUE_CHECK_WANTED=no               \
            VALUE_HISTORY_WANTED=no             \
            PERFORMANCE_COUNTERS_WANTED=yes     \
            DYNAMIC_LOG_WANTED=yes              \
            ASSERT_LEVEL_WANTED=0               \
            CORE_COUNT_WANTED=-3

If the sources were already ./configure'd then two make targets achieve the same:

make parallel
make parallel1

The first make target parallel is the setting for maximum performance, while the 
second make target parallel1 is like parallel but with internal performance 
counters enabled. The performance counters are needed for benchmarking of the 
GNU APL performance via FIO∆get_statistics in workspace 5 FILE_IO and 

FIO[201]⎕  respectively.

Parallel execution is an entirely experimental feature that should not be 
used in mission-critical applications. Support for bugs caused by this 
feature is rather limited.

Controlling the Core Count

The number of cores that are used in parallel APL execution can be controlled in 
several ways.

The ./configure Option CORE_COUNT_WANTED

The first way to control the (maximum) core count is at the point in time when the 



interpreter source code is being ./configure’d. The configure option 
CORE_COUNT_WANTED defines how the interpreter chooses the number of cores 
(see README-2-configure):

• CORE_COUNT_WANTED=0: sequential 

• CORE_COUNT_WANTED=1: parallel (but using only 1 core) 

• CORE_COUNT_WANTED=2: parallel on 2 cores 

• … 

• CORE_COUNT_WANTED=N: parallel on N cores 

• CORE_COUNT_WANTED=-1: parallel on all existing cores 

• CORE_COUNT_WANTED=-2: parallel; the core count is determined by the 
command line argument -cc of the interpreter 

• CORE_COUNT_WANTED=-3: parallel; the core count is determined at 
interpreter run-time via SYL; ⎕

The command line option -cc works only if CORE_COUNT_WANTED=-2. 
For CORE_COUNT_WANTED > 1 or -2, it is the responsibility of the user to
ensure that the desired number of cores actually exist (i.e. this is not 
checked because some platforms cannot do that).

CORE_COUNT_WANTED=-3 is the most useful setting, because it allows 
changing the core count at run-time of an APL program (e.g. in a benchmarking 
workspace like Scalar2.apl).

Changing the Core Count at Run-time

If CORE_COUNT_WANTED=-3 (the default) then the system variable SYL⎕ , in 
particular SYL[24 25 26;]⎕  control the number of cores being used:

      SYL[24 25 26;]⎕
 CORE_COUNT_WANTED (per ./configure) ¯3
 cores available                     12
 cores used                           1

SYL[24;2]⎕

SYL[24;2])⎕  is a read-only value pertaining to the value used for 
CORE_COUNT_WANTED in ./configure.

SYL[25;2]⎕

SYL[25;2])⎕  is the number of cores either chosen by SYL[24;2] or else as ⎕
indicated by the platform. The value 12 above as reported on a i7-8700 Intel CPU 
with 6 physical cores and 2 core threads per physical core.

SYL[26;2]⎕

SYL[26;2])⎕  is the number of cores used by the interpreter. Setting:

SYL[26;2])←0⎕  chooses sequential operation of the interpreter. SYL[26;2])←N⎕  
with N≥1 chooses parallel operation on *N cores. * Other values trigger a 



DOMAIN ERROR.

SYL[26;2])←1⎕  could be useful for benchmarking to see the difference 
between parallel and sequential code, but without distributing the 
computational load over several cores.

Setting SYL[26;2]⎕  with a proper value in APL calls Parallel::set_core_count() 
in Parallel.cc.

The Initialization of the Parallel Subsystem

Parallel execution is initialized as follows:

• the initialization is performed automatically when the interpreter is started 
(function Parallel::init()). If the interpreter is ./configured with 
DYNAMIC_LOG_WANTED=yes then logging of the initialization can be 
enabled with command line option -l 41. 

• Parallel::init() initializes semaphores related to parallel execution and then 
calls CPU_pool::init(). CPU_pool::init() determines, which CPUs can be 
used by the interpreter and stores them in its vector the_CPUs. If 
CORE_COUNT_WANTED is ≥ 0 or -2 then the CPUs in the vector are 
determined by CORE_COUNT_WANTED or by the -cc command line option 
(no checks are performed to verify that the CPUs chosen are correct). 
Otherwise, i.e. (CORE_COUNT_WANTED is -1 or -3) the cores available to 
the interpreter are determined by pthread_getaffinity_np() and all CPUs 
that are available to the interpreter are stored in the vector. 

• Then Parallel::init() creates a thread pool with 
Thread_context::init_parallel, with one thread for each CPU in 
CPU_pool::the_CPUs. If CORE_COUNT_WANTED = -3 then only the first 
thread is activated (and the user needs to use SYL in order to activate more⎕
cores. Otherwise all threads are activated (and SYL cannot be used). Finally⎕
Parallel::init() brings all threads into their initial state. 

At any point in time, a thread can be in one of 2 states:

• BLKD: Blocked on its private semaphore Thread_context::pool_sema, or 

• RUN: Running. 

A thread in state RUN can further be in 2 sub-states:

• busy-waiting for more work to become available, or 

• computing the current job. 

The first thread in the pool, aka. the master, is always in state RUN and is never 
busy-waiting (instead it executes the APL interpreter).

The remaining threads, aka. the workers, are in state BLKD as long as they are 
inactive (this can only happen if SYL is being used and the worker is above the ⎕
value set with SYL). Otherwise the worker is in state ⎕ RUN. A worker in state 
RUN is not necessarily computing, e.g. if the joblists are empty and the worker is 
busy-waiting for more work.

When the interpreter (i.e. the master) needs to compute a primitive scalar function



(or an inner or outer product of a primitive scalar function) with a sufficiently large
argument, then it unleashes the workers (Thread_context::M_fork()), performs 
its own share of the work, and waits for all workers to complete their share of the 
work (Thread_context::M_join()).

At the same time, the workers wait for the master’s M_fork() in 
Thread_context::PF_fork(), perform their share of the work, indicate that their 
work is complete, and wait for all others to complete as well 
(Thread_context::M_join()).

The Operation of the Parallel Subsystem

After initialization, the parallel subsystem works (see Thread_context.cc/hh) as 
follows.

• worker thread in state BLKD do nothing. This case can only occur with 
CORE_COUNT_WANTED=-3, and the transition between states BLKD and 
RUN can (after the initialization) only occur by setting SYL[26;2]. ⎕

• every thread maintains a variable job_number which is initially 0 for both 
the master and every worker: 

Thread_context::Thread_context()
   : N(CNUM_INVALID),
     thread(0),
     *job_number(0)*,
     job_name("no-job-name"),
     blocked(false)
{
}

• As long as the Thread_context::job_number of the master is equal to the 
Thread_context::job_number number of a worker, that worker busy-waits 
until both numbers differ. The master also increments the static variable 
busy_worker_count: 

   /// start parallel execution of work in a worker
   void PF_fork()
      {
        while (get_master().job_number == job_number)
              /* busy wait until the master has increased job_number */ ;
      }

• When the master finds new work (e.g. after interpreting a scalar APL 
function) then it inserts that work into the proper Parallel_job_list<> of 
each worker and increments its own Thread_context::job_number (in 
Thread_context::M_fork()). This causes all workers to begin their share of 
the work: 

   /// start parallel execution of work at the master
   static void M_fork(const char * jname)
      {
        get_master().job_name = jname;
        atomic_add(busy_worker_count, active_core_count - 1);



        ++get_master().job_number;
      }

• The workers perform their work and, after finishing it, increment their 
Thread_context::job_number and decrement busy_worker_count.again: 

   /// end parallel execution of work in a worker
   void PF_join()
      {
        atomic_add(busy_worker_count, -1);   // we are ready
        ++job_number;            // we reached master job_number

        // wait until all workers finished or new job from master
        while (atomic_read(busy_worker_count) != 0 &&
               get_master().job_number == job_number)
              /* busy wait */ ;
      }

 

The synchronization scheme above was designed such that as little interaction 
between threads is needed and heavier constructs like semaphores could be 
avoided.

Notation

In the context of parallel execution, the prefix M_ designates functions that are 
only called from the master thread, while the prefix PF_ (for pool function) 
designates functions that are called from a worker thread.

Master functions only exist in class Thread_context, while pool functions exist in 
classes Thread_context, ScalarFunction, Bif_OPER2_INNER, and 
Bif_OPER2_OUTER. Note that the master thread itself acts like a worker thread 
after returning from M_fork() and before calling M_join().



Benchmarking of the Parallel Execution

The Theory …

If a scalar APL function, is computed on a single core, then the time (most 
conveniently expressed in terms of CPU cycles) to compute it for an APL array with
a ravel of length N is:

Tseq(N) = ⍺seq + βseq × N.

In theory, the parallel computation of the same function on a number of cores 
requires time:

Tpar(N) = ⍺par + βpar × N.

The terms ⍺seq and ⍺par are the start-up times for the computation, while the terms
βseq and βpar are the per-item times for the computation.

Under normal circumstance one has:

• ⍺seq ≤ ⍺par 

• βseq ≥ βpar 

Under ideal circumstances one even has

βpar = βseq ÷ C, or: βseq ÷ βpar = C.

where C is the number of cores involved. The quotient βseq ÷ βpar is commonly 
known as the speed-up of the parallel execution. The difference ⍺par - ⍺seq is 
primarily caused by functions like M_fork(), PF_fork(), M_join() and PF_join() 
above, but also by the overhead caused by the joblist mechanism that is required 
to efficiently parallelize scalar operation on nested APL values.

The equations above can be used to compute a break-even length NBE so that:

• Tseq(N) < Tpar(N) for N < NBE 

• Tseq(N) > Tpar(N) for N > NBE. 

That simply means that the computation for arrays with a short ravel (i.e. of less 
than NBE items) it is faster to compute sequentially, while for longer ravels it is 
faster to compute in parallel.

The above formulae are easier to interpret if one plots the execution times (on the 
Y axis) vs. the vector length (on the X axis). For example, if

• ⍺seq = 10, ⍺par = 10, i.e. Tseq(N) = 10 + 10×N (green plot line) 

• βseq = 30, βpar = 5, i.e. Tpar(N) = 30 + 5 (red plot line) 

then the theory predicts the following execution times:



As one can see, the intersection of the Y-axis (i.e. N=0) and the plot line Tseq(N) 
and Tpar(N) is the start-up time ⍺seq and ⍺par respectively. The break-even length in
this example is the intersection of the two plot lines at N=4.

… and the Practice

As Benjamin Brewster stated in 1882: In theory there is no difference between 
theory and practice, while in practice there is.

This statement is particularly true for benchmarking. Until about 1990, given some
piece of assembler code, it was feasible (and was actually done) to compute the 
number of CPU cycles that the execution of that code would take.

Since then a number of optimizations, both in hardware and in software, have 
made it practically impossible to predict the execution time of any given code. 
Even worse, these days the same code, executed again and again, typically results 
in rather different cycle counts for each execution pass. Even if "no" other 
processes execute on the same CPU on which a benchmark measurement is 
performed (where "no other process" means not counting the typically 250 or so 
operating system processes that are sitting idle on the CPU) the results can differ 
substantially between different measurements of the same code.

So in practice, lets discuss the results of a benchmark:



This benchmark measured the time to compute Z←¯6 ○ MixIRC for different vector
lengths, ranging from N=200 to N=4000. MixIRC is a random mix of integer, real 
and complex arguments of ¯6○ aka. arccosh. The benchmark worked well in the 
sense that the measured numbers of CPU cycles were very much in line with the 
theory. The thick lines are those that have the smallest squared differences from 
the measurement points (the line that best matches the measurement points).

To be on the safe side, lets repeat the same benchmark:



This one went less well. One difference from the previous one is that the deviations
of the measurement points are considerably larger than in the previous run. If one 
runs the benchmark many times, then it looks like the deviations in the sequential 
execution are larger than in the parallel execution. More importantly, the 
sequential start-up time ⍺seq is now larger than the parallel start-up time ⍺par.

These two examples are only meant to highlight some the problems that may occur
if one tries to determine the parameters  and β. The following is a summary of ⍺

findings after having performed many such measurements with GNU APL and 
different core counts, vector lengths, and primitive functions:

• every measurement needs to be visualized (plotted) to rule out too many or 
too large outliers. 

• for determining the start-up costs ⍺seq and ⍺par it seems to be better to use 
fewer vector lengths and also shorter vectors. 

• for determining the per-item costs βseq and βpar it is better to use longer 
vectors. 

• scalar functions with a low β (like A+B) tend to give more obscure results 
(and lower speed-ups) than scalar functions with a higher β. This is primarily 
caused by the fact that all cores share the same interface to the (shared) 
main memory of the machine. 

• The speed-up of additional virtual cores (compared to physical ones) seems 
to be rather low. That is, for example, the speed-up of 12 virtual cores (on a 
hyper-threaded CPU with 6 physical cores) is only marginally higher than on 
6 physical cores. GNU APL addresses this fact by distributing the load over 



the physical cores before placing hyper-threads on the physical cores. 

The Benchmark Workspace Scalar2.apl

The workspace workspaces/Scalar2.apl can be used to measure the execution 
times of scalar functions. GNU APL provides a number of internal performance 
counters. These counters need to be enabled with 
PERFORMANCE_COUNTERS_WANTED=yes in ./configure, and the CPU must 
have a cycle counter and an instruction to read it (currently only Intel CPUs can 
use this feature). The cycle counter of the CPU is read before and after the 
computation of a scalar function, and the difference can be read in APL via 

FIO[200]⎕  and FIO[201]⎕ . Measuring execution times this way is far more 
precise than old-fashioned measurements using TS at the APL level.⎕

Scalar2.apl is most conveniently called from the command line, and what is being 
measured can be controlled via command line arguments. For example (from the 
top-level directory of GNU APL):

make parallel1      # runs ./configure with suitable options
src/apl -f workspaces/Scalar2.apl -- -c 3,6 -d 200× 20⍳

The Scalar2.apl workspace understands the following command line options:

Table 1. Table Scalar2.apl command line options (after --)
Option Effect Example Default
-c core-counts set the 

number of 
cores

-c 2,3 2

-d vector-lengths set the 
vector 
lengths (N-
axis)

-d 200× 2⍳ 20⍳

-f function select the 
function to 
measure

-f 20 39

For every core count, Scalar2.apl displays a separate plot window with the 
measurement results for sequential execution and for the parallel execution with 
the given core count.

Recursive Parallelization

The purpose of the joblist mentioned above is as follows. Consider the APL 
expression below, computed in parallel on 4 cores:

Z←1 2 ( 1000) 4 + 1 (20 21 22) 3 4⍳



The 4 ravel elements of the left and right arguments of dyadic + are stored in 4 
consecutive Cells, which are distributed in a round-robin fashion over the cores. 
That is:

Core #1 computes: 1 + 1              (1 addition)
Core #2 computes: 2 + 20 21 22       (3 additions)
Core #3 computes: ( 1000) + 3        (1000 additions)⍳
Core #4 computes: 4 + 4              (1 addition)

Therefore cores #1 and #4 compute one sum, core #2 computes 3 sums, and core 
#3 computes 1000 sums. This is obviously not optimal since cores #1, #2, and #3 
are most of the time idle, waiting for core #3 to finish.

To avoid this case, GNU APL parallelizes scalar functions recursively with the 
following algorithm.

1. the interpreter starts with an empty joblist. 

2. when the interpreter evaluates a scalar function, then it puts a new job into 
the joblist. The job describes the relevant parameters (essentially the scalar 
function to be computed and the address(es) of its argument(s). 

3. LOOP: while the joblist is not empty: 

1. remove the first job from the list 

2. perform the computation defined in the job in parallel 

3. if a core comes across a nested ravel item, then: 

• if the item (and hence the result) is small: compute it immediately

• if the item is large: create a new APL value whose ravel is un-
initialized (this operation takes constant time) and add a new 
entry into the joblist (for computing the ravel of the nested result 
later on). 

For performance reasons, there are actually two such joblists: 
Thread_context::joblist_B for monadic scalar functions, and 
Thread_context::joblist_AB for dyadic scalar functions (and inner and outer 
products of them).

Setting Thresholds

One purpose of benchmarking is to find the break-even lengths for scalar 
functions. After that length is found, one can inform the APL interpreter about the 
break-even lengths. This is done via a configuration file, normally 
/usr/local/etc/gnu-apl.d/parallel_thresholds.

This file is installed by make install, but the values in the file are usually not 
optimal. One can, however, enter better values manually. Consider a few non-
empty lines in the file:

perfo_1(F12_PLUS,      _B,   "+ B",    8888888888888888888ULL)
perfo_1(F12_POWER,     _B,   "  B",    12                    )⋆



perfo_2(F12_TIMES,     _AB,  "A × B",  33                    )

The first line above sets the break-even point of monadic + to 
8888888888888888888ULL, which is a value so large that parallel execution will 
never happen for monadic +.

The second line sets the break-even point of monadic * to 12. Arrays (of any rank) 
with fewer than 12 ravel items will be computed sequentially, but longer arrays in 
parallel.

The third line sets the break-even point of dyadic × to 33. Arrays (of any rank) 
with fewer than 33 ravel items will be computed sequentially, but longer arrays in 
parallel.

In general, the fewer cycles a function needs, the higher should the threshold be 
set.

The Optimal vs. the Maximal Core Count

The last plot window shown by the Scalar2 workspace summarizes the speed-ups 
that were achieved for the different core counts that were selected with the -c 
option.

 
leave at least one of the available cores unused because otherwise the 
operating system could grab one of the cores for its own purposes and that 
core would then become much slower than the others. The operating 



system is usually smart enough to locate an unused core for its own 
purposes, but that must fail if all cores are fully loaded with APL work.

The speed-ups plotted in the last window are usually reasonable if:

• the APL function that is being bench-marked (as selected by the -f option) is 
not too lightweight, and 

• the vector lengths (-d option) are not too short. 

The measurement shown above was executed on a 6-core i7-8700 CPU. The CPU 
has 6 (physical) cores with 12 (logical) core threads where the 12 core threads are 
mapped to 12 "CPUs" in the operating system as (per /proc/cpuinfo).

The benchmark command used was:

src/apl -f workspaces/Scalar2.apl -- -c 11 -d 5000× 20 -f 39⍳ ⍳

which means that:

• -f 39 : selects Z←¯6○B aka. arccosh(B) as the benchmarking function with 
a mix of Integer, Real, and Complex numbers, 

• -d 5000× 20⍳  : use vector lengths B = 5,000, 10,000, 15,000 … 100,000, ⍴

and 

• -c 11⍳  : use core counts of 1, 2, 3, … and 11. 

The 11 different core counts and 20 different vector lengths above amounted to a 
total of 220 (= 11×20) individual measurements in the benchmark plotted above.

Had we run the benchmark with -c 12⍳  instead of -c 11⍳  then the measurement 
with 12 cores would have shown a rather bad speed-up (try it yourself with -c set 
to the number of cores on your computer).

Corollary: the optimal performance is achieved when the number of cores used 
for parallel APL is slightly smaller than the number of cores available. The number 
of cores available is also influenced by other (even idle) processes on the machine 
because they also influence the scheduling of the threads that perform the APL 
work.
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