Package ‘mirt’

October 31, 2020

Version 1.33.2
Type Package
Title Multidimensional Item Response Theory
Description Analysis of dichotomous and polytomous response data using unidimensional and multidimensional latent trait models under the Item Response Theory paradigm (Chalmers (2012) <doi:10.18637/jss.v048.i06>). Exploratory and confirmatory models can be estimated with quadrature (EM) or stochastic (MHRM) methods. Confirmatory bi-factor and two-tier analyses are available for modeling item testlets. Multiple group analysis and mixed effects designs also are available for detecting differential item and test functioning as well as modeling item and person covariates. Finally, latent class models such as the DINA, DINO, multidimensional latent class, and several other discrete latent variable models, including mixture and zero-inflated response models, are supported.

VignetteBuilder knitr
Depends stats, R (>= 3.6.0), stats4, lattice, methods
Imports GPArotation, Rcpp, mgcv, vegan, Deriv, splines, dcurver
Suggests boot, latticeExtra, directlabels, shiny, knitr, markdown, Rsolnp, nloptr, sirt, plink, mirtCAT

ByteCompile yes
LazyLoad yes
LazyData yes
LinkingTo Rcpp, RcppArmadillo
License GPL (>= 3)
Repository CRAN
Maintainer Phil Chalmers <rphilip.chalmers@gmail.com>

URL https://github.com/philchalmers/mirt,
https://github.com/philchalmers/mirt/wiki,
https://groups.google.com/forum/#!forum/mirt-package
BugReports https://github.com/philchalmers/mirt/issues?state=open

RoxygenNote 7.1.1

NeedsCompilation yes

Author Phil Chalmers [aut, cre] (<https://orcid.org/0000-0001-5332-2810>),
Joshua Pritikin [ctb],
Alexander Robitzsch [ctb],
Mateusz Zoltak [ctb],
KwonHyun Kim [ctb],
Carl F. Falk [ctb],
Adam Meade [ctb],
Lennart Schneider [ctb],
David King [ctb],
Chen-Wei Liu [ctb],
Ogreden Oguzhan [ctb]

Date/Publication 2020-10-31 20:10:02 UTC

R topics documented:

Mirt-package ... 4
anova-method .. 5
areainfo .. 6
averageMI .. 7
bfactor .. 9
Bock1997 ... 14
boot.LR ... 15
boot.mirt .. 16
coeff-method ... 17
createGroup ... 19
createItem ... 20
deAyala ... 25
DIF ... 25
DiscreteClass-class 29
draw_parameters 30
DRF ... 32
DTF ... 37
empirical_ES .. 40
empirical_plot .. 43
empirical_rxx ... 45
estfun.AllModelClass 46
expand.table .. 47
expected.item .. 50
expected.test ... 51
extract.group ... 52
extract.item .. 53
extract.mirt .. 54
fixedCalib ... 57
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>fixef</td>
<td>59</td>
</tr>
<tr>
<td>fscores</td>
<td>60</td>
</tr>
<tr>
<td>gen.difficulty</td>
<td>65</td>
</tr>
<tr>
<td>imputeMissing</td>
<td>66</td>
</tr>
<tr>
<td>itemfit</td>
<td>67</td>
</tr>
<tr>
<td>itemGAM</td>
<td>73</td>
</tr>
<tr>
<td>iteminfo</td>
<td>76</td>
</tr>
<tr>
<td>itemplot</td>
<td>78</td>
</tr>
<tr>
<td>key2binary</td>
<td>80</td>
</tr>
<tr>
<td>lagrange</td>
<td>82</td>
</tr>
<tr>
<td>likert2int</td>
<td>83</td>
</tr>
<tr>
<td>logLik-method</td>
<td>85</td>
</tr>
<tr>
<td>LSAT6</td>
<td>86</td>
</tr>
<tr>
<td>LSAT7</td>
<td>87</td>
</tr>
<tr>
<td>M2</td>
<td>88</td>
</tr>
<tr>
<td>marginal_rxx</td>
<td>90</td>
</tr>
<tr>
<td>MDIFF</td>
<td>91</td>
</tr>
<tr>
<td>mdirt</td>
<td>92</td>
</tr>
<tr>
<td>MDISC</td>
<td>99</td>
</tr>
<tr>
<td>mirt</td>
<td>100</td>
</tr>
<tr>
<td>mirt.model</td>
<td>123</td>
</tr>
<tr>
<td>mirtCluster</td>
<td>128</td>
</tr>
<tr>
<td>MixedClass-class</td>
<td>129</td>
</tr>
<tr>
<td>mixedmirt</td>
<td>130</td>
</tr>
<tr>
<td>MixtureClass-class</td>
<td>137</td>
</tr>
<tr>
<td>mod2values</td>
<td>138</td>
</tr>
<tr>
<td>multipleGroup</td>
<td>139</td>
</tr>
<tr>
<td>MultipleGroupClass-class</td>
<td>146</td>
</tr>
<tr>
<td>numerical_deriv</td>
<td>147</td>
</tr>
<tr>
<td>personfit</td>
<td>149</td>
</tr>
<tr>
<td>PLCI.mirt</td>
<td>150</td>
</tr>
<tr>
<td>plot,MultipleGroupClass,missing-method</td>
<td>152</td>
</tr>
<tr>
<td>poly2dich</td>
<td>156</td>
</tr>
<tr>
<td>print-method</td>
<td>157</td>
</tr>
<tr>
<td>print.mirt_df</td>
<td>157</td>
</tr>
<tr>
<td>print.mirt_list</td>
<td>158</td>
</tr>
<tr>
<td>print.mirt_matrix</td>
<td>158</td>
</tr>
<tr>
<td>probtrace</td>
<td>159</td>
</tr>
<tr>
<td>randef</td>
<td>160</td>
</tr>
<tr>
<td>remap.mirt</td>
<td>161</td>
</tr>
<tr>
<td>remap.distance</td>
<td>162</td>
</tr>
<tr>
<td>residuals-method</td>
<td>163</td>
</tr>
<tr>
<td>RMSD_DIF</td>
<td>166</td>
</tr>
<tr>
<td>SAT12</td>
<td>169</td>
</tr>
<tr>
<td>Science</td>
<td>170</td>
</tr>
<tr>
<td>show-method</td>
<td>171</td>
</tr>
<tr>
<td>SIBTEST</td>
<td>171</td>
</tr>
<tr>
<td>simdata</td>
<td>175</td>
</tr>
</tbody>
</table>
mirt-package

Full information maximum likelihood estimation of IRT models.

Description

Full information maximum likelihood estimation of multidimensional IRT models

Details

Analysis of dichotomous and polytomous response data using unidimensional and multidimensional latent trait models under the Item Response Theory paradigm. Exploratory and confirmatory models can be estimated with quadrature (EM) or stochastic (MHRM) methods. Confirmatory bi-factor and two-tier analyses are available for modeling item testlets. Multiple group analysis and mixed effects designs also are available for detecting differential item and test functioning as well as modeling item and person covariates. Finally, latent class models such as the DINA, DINO, multidimensional latent class, and several other discrete variable models are supported.

Users interested in the most recent version of this package can visit https://github.com/philchalmers/mirt and follow the instructions for installing the package from source. Questions regarding the package can be sent to the mirt-package Google Group, located at https://groups.google.com/forum/#!forum/mirt-package. User contributed files, workshop files, and evaluated help files are also available on the package wiki (https://github.com/philchalmers/mirt/wiki).

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

anova-method

Compare nested models with likelihood-based statistics

Description

Compare nested models using likelihood ratio test (X2), Akaike Information Criterion (AIC), sample size adjusted AIC (AICc), Bayesian Information Criterion (BIC), Sample-Size Adjusted BIC (SABIC), and Hannan-Quinn (HQ) Criterion.

Usage

```r
## S4 method for signature 'SingleGroupClass'
anova(object, object2, bounded = FALSE, mix = 0.5, verbose = TRUE)
```

Arguments

- `object`: an object of class `SingleGroupClass`, `MultipleGroupClass`, or `MixedClass`
- `object2`: a second model estimated from any of the mirt package estimation methods
- `bounded`: logical; are the two models comparing a bounded parameter (e.g., comparing a single 2PL and 3PL model with 1 df)? If TRUE then a 50:50 mix of chi-squared distributions is used to obtain the p-value
- `mix`: proportion of chi-squared mixtures. Default is 0.5
- `verbose`: logical; print additional information to console?

Value

A `data.frame/mirt_df` object

References

Examples

```r
## Not run:
x <- mirt(Science, 1)
x2 <- mirt(Science, 2)
anova(x, x2)

# in isolation
anova(x)

# bounded parameter
dat <- expand.table(LSAT7)
mod <- mirt(dat, 1)
```
mod2 <- mirt(dat, 1, itemtype = c(rep("2PL", 4), "3PL"))
anova(mod, mod2) # unbounded test
anova(mod, mod2, bounded = TRUE) # bounded

priors
model <- 'F = 1-5
PRIOR = (5, g, norm, -1, 1)'
mod1b <- mirt(dat, model, itemtype = c(rep("2PL", 4), "3PL"))
anova(mod1b)

model2 <- 'F = 1-5
PRIOR = (1-5, g, norm, -1, 1)'
mod2b <- mirt(dat, model2, itemtype = "3PL")
anova(mod1b, mod2b)

End(Not run)

describe areainfo Function to calculate the area under a selection of information curves

Description
Compute the area within test or item information over a definite integral range.

Usage
areainfo(
 x,
 theta_lim,
 which.items = 1:extract.mirt(x, "nitems"),
 group = NULL,
 ...
)

Arguments
x an object of class 'SingleGroupClass', or an object of class 'MultipleGroup-Class' if a suitable group input were supplied
theta_lim range of integration to be computed
which.items an integer vector indicating which items to include in the expected information function. Default uses all possible items

... group argument to pass to extract.group function. Required when the input object is a multiple-group model

... additional arguments passed to integrate
Value

A data frame with the lower and upper integration range, the information area within the range (Info), the information area over the range -10 to 10 (Total.Info), proportion of total information given the integration range (Info.Proportion), and the number of items included (nitems).

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

```r
dat <- expand.table(LSAT7)
mod <- mirt(dat, 1)

areainfo(mod, c(-2,0), which.items = 1) #item 1
## Not run:
areainfo(mod, c(-2,0), which.items = 1:3) #items 1 to 3
areainfo(mod, c(-2,0)) # all items (total test information)

# plot the area
area <- areainfo(mod, c(-2,0))
Theta <- matrix(seq(-3,3, length.out=1000))
info <- testinfo(mod, Theta)
plot(info ~ Theta, type = 'l')
pick <- Theta >= -2 & Theta <=0
polygon(c(-2, Theta[pick], 0), c(0, info[pick], 0), col='lightblue')
text(x = 2, y = 0.5, labels = paste("Total Information: ", round(area$TotalInfo, 3), "\n\nInformation in (-2, 0):"," (round(area$Info, 3), paste("(" , round(100 * area$Proportion, 2), ")", sep = "")), cex = 1.2)
## End(Not run)
```

describeMI

Collapsing values from multiple imputation draws

Description

This function computes updated parameter and standard error estimates using multiple imputation methodology. Given a set of parameter estimates and their associated standard errors the function returns the weighted average of the overall between and within variability due to the multiple imputations according to Rubin's (1987) methodology.
averageMI(par, SEpar, as.data.frame = TRUE)

Arguments

par
a list containing parameter estimates which were computed the imputed datasets

SEpar
a list containing standard errors associated with par

as.data.frame
logical; return a data.frame instead of a list? Default is TRUE

Value

returns a list or data.frame containing the updated averaged parameter estimates, standard errors, and t-values with the associated degrees of freedom and two tailed p-values

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

```r
## Not run:
#simulate data
set.seed(1234)
N <- 1000

# covariates
X1 <- rnorm(N); X2 <- rnorm(N)
covdata <- data.frame(X1, X2)
Theta <- matrix(0.5 * X1 + -1 * X2 + rnorm(N, sd = 0.5))

#items and response data
a <- matrix(1, 20); d <- matrix(rnorm(20))
dat <- simdata(a, d, 1000, itemtype = '2PL', Theta=Theta)

mod1 <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2)
coef(mod1, simplify=TRUE)

#draw plausible values for secondary analyses
pv <- fscores(mod1, plausible.draws = 10)
pvmods <- lapply(pv, function(x, covdata) lm(x ~ covdata$X1 + covdata$X2),
covdata=covdata)
```
compute Rubin's multiple imputation average
so <- lapply(pvmods, summary)
par <- lapply(so, function(x) x$coefficients[, 'Estimate'])
SEpar <- lapply(so, function(x) x$coefficients[, 'Std. Error'])
averageMI(par, SEpar)

End(Not run)

bfactor

Full-Information Item Bi-factor and Two-Tier Analysis

Description

bfactor fits a confirmatory maximum likelihood two-tier/bifactor/testlet model to dichotomous and polytomous data under the item response theory paradigm. The IRT models are fit using a dimensional reduction EM algorithm so that regardless of the number of specific factors estimated the model only uses the number of factors in the second-tier structure plus 1. For the bifactor model the maximum number of dimensions is only 2 since the second-tier only consists of a ubiquitous unidimensional factor. See mirt for appropriate methods to be used on the objects returned from the estimation.

Usage

bfactor(
 data,
 model,
 model2 = paste0("G = 1-", ncol(data)),
 group = NULL,
 quadpts = NULL,
 invariance = "",
 ...
)

Arguments

data a matrix or data.frame that consists of numerically ordered data, with missing data coded as NA

model a numeric vector specifying which factor loads on which item. For example, if for a 4 item test with two specific factors, the first specific factor loads on the first two items and the second specific factor on the last two, then the vector is c(1,1,2,2). For items that should only load on the second-tier factors (have no specific component) NA values may be used as place-holders. These numbers will be translated into a format suitable for mirt.model(), combined with the definition in model2, with the letter 'S' added to the respective factor number

model2 a two-tier model specification object defined by mirt.model() or a string to be passed to mirt.model. By default the model will fit a unidimensional model in the second-tier, and therefore be equivalent to the bifactor model
bfactor

<table>
<thead>
<tr>
<th>group</th>
<th>a factor variable indicating group membership used for multiple group analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>quadpts</td>
<td>number of quadrature nodes to use after accounting for the reduced number of dimensions. Scheme is the same as the one used in mirt, however it is in regards to the reduced dimensions (e.g., a bifactor model has 2 dimensions to be integrated)</td>
</tr>
<tr>
<td>invariance</td>
<td>see multipleGroup for details, however, the specific factor variances and means will be constrained according to the dimensional reduction algorithm</td>
</tr>
<tr>
<td>...</td>
<td>additional arguments to be passed to the estimation engine. See mirt for more details and examples</td>
</tr>
</tbody>
</table>

Details

bfactor follows the item factor analysis strategy explicated by Gibbons and Hedeker (1992), Gibbons et al. (2007), and Cai (2010). Nested models may be compared via an approximate chi-squared difference test or by a reduction in AIC or BIC (accessible via anova). See mirt for more details regarding the IRT estimation approach used in this package.

The two-tier model has a specific block diagonal covariance structure between the primary and secondary latent traits. Namely, the secondary latent traits are assumed to be orthogonal to all traits and have a fixed variance of 1, while the primary traits can be organized to vary and covary with other primary traits in the model.

\[
\Sigma_{\text{two-tier}} = \begin{pmatrix}
G & 0 \\
0 & \text{diag}(S)
\end{pmatrix}
\]

The bifactor model is a special case of the two-tier model when \(G \) above is a 1x1 matrix, and therefore only 1 primary factor is being modeled. Evaluation of the numerical integrals for the two-tier model requires only \(ncol(G) + 1 \) dimensions for integration since the \(S \) second order (or 'specific') factors require only 1 integration grid due to the dimension reduction technique.

Note: for multiple group two-tier analyses only the second-tier means and variances should be freed since the specific factors are not treated independently due to the dimension reduction technique.

Value

function returns an object of class SingleGroupClass (SingleGroupClass-class) or MultipleGroupClass (MultipleGroupClass-class).

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

See Also
mirt

Examples

Not run:
load SAT12 and compute bifactor model with 3 specific factors
data(SAT12)
data <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
specific <- c(2,3,2,3,2,1,2,1,1,3,1,3,1,2,1,1,3,1,3,1,3,1,3,1,3,1,2,3,1,2)
mod1 <- bfactor(data, specific)
summary(mod1)
itemplot(mod1, 18, drop.zeros = TRUE) #drop the zero slopes to allow plotting

Try with fixed guessing parameters added
guess <- rep(.1,32)
mod2 <- bfactor(data, specific, guess = guess)
coef(mod2)
anova(mod1, mod2)

don't estimate specific factor for item 32
specific[32] <- NA
mod3 <- bfactor(data, specific)
anova(mod1, mod3)

same, but declared manually (not run)
#sv <- mod2values(mod1)
#sv$value[220] <- 0 #parameter 220 is the 32 items specific slope
#sv$est[220] <- FALSE
#mod3 <- bfactor(data, specific, pars = sv) #with excellent starting values

#########
mixed itemtype example

#simulate data
a <- matrix(c(
1,0,5,NA,
1,0,5,NA,
1,0,5,NA,
1,0,5,NA,
1,0,5,NA
), nrow = 5, ncol = 4, byrow = TRUE)

1, 0.5, NA,
1, 0.5, NA,
1, NA, 0.5,
1, NA, 0.5), ncol = 3, byrow = TRUE)

d <- matrix(c(
-1.0, NA, NA,
-1.5, NA, NA,
1.5, NA, NA,
0.0, NA, NA,
2.5, 1.0, -1,
3.0, 2.0, -0.5,
3.0, 2.0, -0.5,
3.0, 2.0, -0.5,
2.5, 1.0, -1,
2.0, 0.0, NA,
-1.0, NA, NA,
-1.5, NA, NA,
1.5, NA, NA,
0.0, NA, NA), ncol = 3, byrow = TRUE)

items <- rep('/quotesingle.Var
2PL
/quotesingle.Var
, 14)

sigma <- diag(3)
dataset <- simdata(a, d, 2000, itemtype = items, sigma = sigma)

specific <- c(rep(1, 7), rep(2, 7))
simmod <- bfactor(dataset, specific)
coef(simmod)

##########
testlet response model
simulate data
set.seed(1234)
a <- matrix(0, 12, 4)
a[, 1] <- rlnorm(12, .2, .3)
ind <- 1
for(i in 1:3){
 a[ind:(ind+3), i+1] <- a[ind:(ind+3), 1]
 ind <- ind+4
}
print(a)
d <- rnorm(12, 0, .5)
sigma <- diag(c(1, .5, 1, .5))
dataset <- simdata(a, d, 2000, itemtype = rep('2PL', 12), sigma = sigma)

estimate by applying constraints and freeing the latent variances
specific <- c(rep(1,4),rep(2,4), rep(3,4))
model <- "G = 1-12
 CONSTRAIN = (1, a1, a2), (2, a1, a2), (3, a1, a2), (4, a1, a2),
 (5, a1, a3), (6, a1, a3), (7, a1, a3), (8, a1, a3),
 (9, a1, a4), (10, a1, a4), (11, a1, a4), (12, a1, a4)
 COV = S1*S1, S2*S2, S3*S3"

simmod <- bfactor(dataset, specific, model)
coef(simmod, simplify=TRUE)

##########
Two-tier model

simulate data
set.seed(1234)
a <- matrix(c(0,1,0.5,NA,NA, 0,1,0.5,NA,NA,
 0,1,0.5,NA,NA, 0,1,0.5,NA,NA,
 0,1,0.5,NA,NA, 0,1,0.5,NA,NA,
 0,1,NA,0.5,NA, 0,1,NA,0.5,NA,
 0,1,NA,0.5,NA, 0,1,NA,0.5,NA,
 1,0,NA,0.5,NA, 1,0,NA,0.5,NA,
 1,0,NA,0.5,NA, 1,0,NA,0.5,NA,
 1,0,NA,0.5,NA, 1,0,NA,0.5,NA,
 1,0,NA,0.5,NA, 1,0,NA,0.5,NA),ncol=5,byrow=TRUE)
d <- matrix(rnorm(16))
items <- rep("Var", 16)
sigma <- diag(5)
sigma[1,2] <- sigma[2,1] <- .4
dataset <- simdata(a,d,2000,itemtype=items,sigma=sigma)

specific <- c(rep(1,5),rep(2,6),rep(3,5))
model <- 'G1 = 1-8
 G2 = 9-16
 COV = G1*G2'

quadpts dropped for faster estimation, but not as precise
simmod <- bfactor(dataset, specific, model, quadpts = 9, TOL = 1e-3)
coef(simmod, simplify=TRUE)
summary(simmod)
itemfit(simmod, QMC=TRUE)
M2(simmod, QMC=TRUE)
Description

A 3-item tabulated data set extracted from Table 3 in Chapter Two.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

```r
## Not run:
dat <- expand.table(Bock1997)
head(dat)
mod <- mirt(dat, 1, 'nominal')

# reproduce table 3 in Bock (1997)
fs <- round(fscores(mod, verbose = FALSE, full.scores = FALSE)[,c('F1','SE_F1')],2)
fttd <- residuals(mod, type = 'exp')
table <- data.frame(fttd[-ncol(fttd)], fs)
table

mod <- mirt(dat, 1, 'nominal')
coef(mod)

## End(Not run)
```
Description

Given two fitted models, compute a parametric bootstrap test to determine whether the less restrictive models fits significantly better than the more restricted model. Note that this hypothesis test also works when prior parameter distributions are included for either model. Function can be run in parallel after using a suitable `mirtCluster` definition.

Usage

```r
boot.LR(mod, mod2, R = 1000)
```

Arguments

- `mod`: an estimated model object
- `mod2`: an estimated model object
- `R`: number of parametric bootstraps to use.

Value

A p-value evaluating whether the more restrictive model fits significantly worse than the less restrictive model.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

```r
## Not run:

#standard
dat <- expand.table(LSAT7)
mod1 <- mirt(dat, 1)
mod2 <- mirt(dat, 1, '3PL')

# standard LR test
anova(mod1, mod2)

# bootstrap LR test (run in parallel to save time)
```
boot.mirt

Calculate bootstrapped standard errors for estimated models

Description

Given an internal mirt object estimate the bootstrapped standard errors. It may be beneficial to run the computations using multi-core architecture (e.g., the parallel package). Parameters are organized from the freely estimated values in mod2values(x) (equality constraints will also be returned in the bootstrapped estimates).

Usage

boot.mirt(x, R = 100, technical = NULL, ...)

Arguments

x an estimated model object
R number of draws to use (passed to the boot() function)
technical technical arguments passed to estimation engine. See mirt for details
... additional arguments to be passed on to boot(...) and estimation engine

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

Not run:

#standard
mod <- mirt(Science, 1)
booted <- boot.mirt(mod, R=20)
plot(booted)
booted

#run in parallel using snow back-end using all available cores
mod <- mirt(Science, 1)
booted <- boot.mirt(mod, parallel = 'snow', ncpus = parallel::detectCores())
booted

End(Not run)

c coef-method

Extract raw coefs from model object

Description

Return a list (or data.frame) of raw item and group level coefficients. Note that while the output to the console is rounded to three digits, the returned list of objects is not. Hence, elements from `cfs <- coef(mod); cfs[[1]]` will contain the unrounded results (useful for simulations).

Usage

```r
## S4 method for signature 'SingleGroupClass'
coef(
  object,
  CI = 0.95,
  printSE = FALSE,
  rotate = "none",
  Target = NULL,
  IRTpars = FALSE,
  rawug = FALSE,
  as.data.frame = FALSE,
  simplify = FALSE,
  unique = FALSE,
  verbose = TRUE,
  ...
)
```

Arguments

- `object`: an object of class `SingleGroupClass`, `MultipleGroupClass`, or `MixedClass`
- `CI`: the amount of converged used to compute confidence intervals; default is 95 percent confidence intervals
- `printSE`: logical; print the standard errors instead of the confidence intervals? When `IRTpars = TRUE` then the delta method will be used to compute the associated standard errors from mirt’s default slope-intercept form
- `rotate`: see `summary` method for details. The default rotation is 'none'
- `Target`: a dummy variable matrix indicting a target rotation pattern
coef-method

IRTpars logical; convert slope intercept parameters into traditional IRT parameters? Only applicable to unidimensional models. If a suitable ACOV estimate was computed in the fitted model, and printSE = FALSE, then suitable CIs will be included based on the delta method (where applicable)

rawug logical; return the untransformed internal g and u parameters? If FALSE, g and u’s are converted with the original format along with delta standard errors

as.data.frame logical; convert list output to a data.frame instead?

simplify logical; if all items have the same parameter names (indicating they are of the same class) then they are collapsed to a matrix, and a list of length 2 is returned containing a matrix of item parameters and group-level estimates

unique return the vector of uniquely estimated parameters

verbose logical; allow information to be printed to the console?

... additional arguments to be passed

References

See Also

summary-method

Examples

```r
## Not run:
dat <- expand.table(LSAT7)
x <- mirt(dat, 1)
coef(x)
coef(x, IRTpars = TRUE)
coef(x, simplify = TRUE)

# with computed information matrix
x <- mirt(dat, 1, SE = TRUE)
coef(x)
coef(x, printSE = TRUE)
coef(x, as.data.frame = TRUE)

# two factors
x2 <- mirt(Science, 2)
coef(x2)
coef(x2, rotate = 'varimax')

## End(Not run)
```
createGroup

Create a user defined group-level object with correct generic functions

Description

Initializes the proper S4 class and methods necessary for mirt functions to use in estimation for defining customized group-level functions. To use the defined objects pass to the mirt(...,customGroup = OBJECT) command, and ensure that the class parameters are properly labeled.

Usage

createGroup(
 par,
 est,
 den,
 nfact,
 standardize = FALSE,
 gr = NULL,
 hss = NULL,
 gen = NULL,
 lbound = NULL,
 ubound = NULL,
 derivType = "Richardson"
)

Arguments

par a named vector of the starting values for the parameters
est a logical vector indicating which parameters should be freely estimated by default
den the probability density function given the Theta/ability values. First input contains a vector of all the defined parameters and the second input must be a matrix called Theta. Function also must return a numeric vector object corresponding to the associated densities for each row in the Theta input
nfact number of factors required for the model. E.g., for unidimensional models with only one dimension of integration nfact = 1
standardize logical; use standardization of the quadrature table method proposed by Woods and Thissen (2006)? If TRUE, the logical elements named 'MEAN_1' and 'COV_11' can be included in the parameter vector, and when these values are set to FALSE in the est input the E-table will be standardized to these fixed values (e.g., par <-c(a1=1,d=0,MEAN_1=0,COV_11=1) with est <-c(TRUE,TRUE,FALSE,FALSE) will standardize the E-table to have a 0 mean and unit variance)
gr gradient function (vector of first derivatives) of the log-likelihood used in estimation. The function must be of the form gr(x,Theta), where x is the object defined by createGroup() and Theta is a matrix of latent trait parameters
hss Hessian function (matrix of second derivatives) of the log-likelihood used in estimation. If not specified a numeric approximation will be used. The input is identical to the gr argument

gen a function used when GenRandomPars = TRUE is passed to the estimation function to generate random starting values. Function must be of the form function(object) ... and must return a vector with properties equivalent to the par object. If NULL, parameters will remain at the defined starting values by default

lbound optional vector indicating the lower bounds of the parameters. If not specified then the bounds will be set to -Inf

ubound optional vector indicating the lower bounds of the parameters. If not specified then the bounds will be set to Inf

derivType if the gr or hss terms are not specified this type will be used to obtain them numerically. Default is 'Richardson'

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

normal density example, N(mu, sigma^2)
den <- function(obj, Theta) dnorm(Theta, obj@par[1], sqrt(obj@par[2]))
par <- c(mu = 0, sigma2 = .5)
est <- c(FALSE, TRUE)
lbound <- c(-Inf, 0)
grp <- createGroup(par, est, den, nfact = 1, lbound=lbound)

mod <- mirt(dat, 1, 'Rasch')
modcustom <- mirt(dat, 1, 'Rasch', customGroup=grp)

coef(mod)
coef(modcustom)
createItem

Description

Initializes the proper S4 class and methods necessary for mirt functions to use in estimation. To use the defined objects pass to the `mirt(...,customItems = list())` command, and ensure that the classes are properly labeled and unique in the list. Additionally, the input `mirt(...,customItemsData = list())` can also be included to specify additional item-level information to better recycle custom-item definitions (e.g., for supplying varying Q-matrices), where the list input must have the same length as the number of items. For further examples regarding how this function can be used for fitting unfolding-type models see Liu and Chalmers (2018).

Usage

```r
createItem(
  name, 
  par, 
  est, 
  P, 
  gr = NULL, 
  hss = NULL, 
  gen = NULL, 
  lbound = NULL, 
  ubound = NULL, 
  derivType = "Richardson", 
  derivType.hss = "Richardson", 
  bytecompile = TRUE
)
```

Arguments

- `name` a character indicating the item class name to be defined
- `par` a named vector of the starting values for the parameters
- `est` a logical vector indicating which parameters should be freely estimated by default
- `P` the probability trace function for all categories (first column is category 1, second category two, etc). First input contains a vector of all the item parameters, the second input must be a matrix called `Theta`, the third input must be the number of categories called `ncat`, and (optionally) a fourth argument termed `itemdata` may be included containing further users specification information. The last optional input is to be utilized within the estimation functions such as `mirt` via the list input `customItemsData` to more naturally recycle custom-item definitions. Therefore, these inputs must be of the form `function(par,Theta,ncat){...}` or `function(par,Theta,ncat,itemdata){...}` to be valid; however, the names of the arguments is not relevant.

Finally, this function must return a matrix object of category probabilities, where the columns represent each respective category.
createItem

gradient function (vector of first derivatives) of the log-likelihood used in estimation. The function must be of the form \(\text{gr}(x, \Theta) \), where \(x \) is the object defined by `createItem()` and \(\Theta \) is a matrix of latent trait parameters. Tabulated (EM) or raw (MHRM) data are located in the `x@dat` slot, and are used to form the complete data log-likelihood. If not specified a numeric approximation will be used.

Hessian function (matrix of second derivatives) of the log-likelihood used in estimation. If not specified a numeric approximation will be used (required for the MH-RM algorithm only). The input is identical to the `gr` argument.

a function used when GenRandomPars = TRUE is passed to the estimation function to generate random starting values. Function must be of the form function(object) ... and must return a vector with properties equivalent to the par object. If NULL, parameters will remain at the defined starting values by default.

optional vector indicating the lower bounds of the parameters. If not specified then the bounds will be set to \(-\infty\).

optional vector indicating the lower bounds of the parameters. If not specified then the bounds will be set to \(\infty\).

if the `gr` term is not specified this type will be used to obtain the gradient numerically or symbolically. Default is the 'Richardson' extrapolation method; see `numerical_deriv` for details and other options. If 'symbolic' is supplied then the gradient will be computed using a symbolical approach (potentially the most accurate method, though may fail depending on how the \(P \) function was defined).

if the `hss` term is not specified this type will be used to obtain the Hessian numerically. Default is the 'Richardson' extrapolation method; see `numerical_deriv` for details and other options. If 'symbolic' is supplied then the Hessian will be computed using a symbolical approach (potentially the most accurate method, though may fail depending on how the \(P \) function was defined).

logical; where applicable, byte compile the functions provided? Default is `TRUE` to provide

Details

The `summary()` function will not return proper standardized loadings since the function is not sure how to handle them (no slopes could be defined at all!). Instead loadings of .001 are filled in as place-holders.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

createItem

Examples

Not run:

```r
name <- 'old2PL'
par <- c(a = .5, b = -2)
est <- c(TRUE, TRUE)
P.old2PL <- function(par, Theta, ncat){
a <- par[1]
b <- par[2]
P1 <- 1 / (1 + exp(-a*(Theta - b)))
cbind(1-P1, P1)
}
x <- createItem(name, par=par, est=est, P=P.old2PL)
```

So, let's estimate it!

```r
dat <- expand.table(LSAT7)
sv <- mirt(dat, 1, c(rep('2PL', 4), 'old2PL'), customItems=list(old2PL=x), pars = 'values')
tail(sv) # looks good
mod <- mirt(dat, 1, c(rep('2PL', 4), 'old2PL'), customItems=list(old2PL=x))
coef(mod)
mod2 <- mirt(dat, 1, c(rep('2PL', 4), 'old2PL'), customItems=list(old2PL=x), method = 'MHRM')
coef(mod2)
```

same definition as above, but using symbolic derivative computations
(can be more accurate/stable)

```r
xs <- createItem(name, par=par, est=est, P=P.old2PL, derivType = 'symbolic')
mod <- mirt(dat, 1, c(rep('2PL', 4), 'old2PL'), customItems=list(old2PL=x))
coef(mod, simplify=TRUE)
```

several secondary functions supported

```r
M2(mod, calcNull=FALSE)
itemfit(mod)
fscores(mod, full.scores=FALSE)
plot(mod)
```

fit the same model, but specify gradient function explicitly (use of a browser() may be helpful)

```r
gr <- function(x, Theta){
  # browser()
a <- x@par[1]
b <- x@par[2]
P <- probtrace(x, Theta)
PQ <- apply(P, 1, prod)
r_P <- x@dat / P
grad <- numeric(2)
grad[2] <- sum(-a * PQ * (r_P[,2] - r_P[,1]))
grad[1] <- sum((Theta - b) * PQ * (r_P[,2] - r_P[,1]))
}
```

check with internal numerical form to be safe

```r
# numerical_deriv(mirt:::EML, x@par[x@est], obj=x, Theta=Theta)
grad
```
```R
x <- createItem(name, par=par, est=est, P=P.old2PL, gr=gr)
mod <- mirt(dat, 1, c(rep('2PL', 4), 'old2PL'), customItems=list(old2PL=x))
coef(mod, simplify=TRUE)

### non-linear
name <- 'nonlin'
par <- c(a1 = .5, a2 = .1, d = 0)
est <- c(TRUE, TRUE, TRUE)
P.nonlin <- function(par, Theta, ncat=2){
  a1 <- par[1]
a2 <- par[2]
d <- par[3]
P1 <- 1 / (1 + exp(-1*(a1*Theta + a2*Theta^2 + d)))
cbind(1-P1, P1)
}
x2 <- createItem(name, par=par, est=est, P=P.nonlin)
mod <- mirt(dat, 1, c(rep('2PL', 4), 'nonlin'), customItems=list(nonlin=x2))
coef(mod)

### nominal response model (Bock 1972 version)
Tnom.dev <- function(ncat) {
  T <- matrix(1/ncat, ncat, ncat - 1)
diag(T[-1, ]) <<- diag(T[-1, ]) - 1
  return(T)
}
name <- 'nom'
par <- c(alp=c(3,0,-3), gam=rep(.4,3))
est <- rep(TRUE, length(par))
P.nom <- function(par, Theta, ncat){
alp <- par[1:(ncat-1)]
gam <- par[ncat:length(par)]
a <- Tnom.dev(ncat) %*% alp
c <- Tnom.dev(ncat) %*% gam
z <- matrix(0, nrow(Theta), ncat)
for(i in 1:ncat)
  z[,i] <- a[i] * Theta + c[i]
P <- exp(z) / rowSums(exp(z))
P
}
nom1 <- createItem(name, par=par, est=est, P=P.nom)
nommod <- mirt(Science, 1, 'nom1', customItems=list(nom1=nom1))
coef(nommod)
Tnom.dev(4) %*% coef(nommod)[[1]][1:3] #a
Tnom.dev(4) %*% coef(nommod)[[1]][4:6] #d

## End(Not run)
```
deAyala

Description
Mathematics data from de Ayala (2009; pg. 14); 5 item dataset in table format.

Author(s)
Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples
```r
## Not run:
dat <- expand.table(deAyala)
head(dat)
## End(Not run)
```

DIF

Differential item functioning statistics

Description
This function runs the Wald and likelihood-ratio approaches for testing differential item functioning (DIF). This is primarily a convenience wrapper to the `multipleGroup` function for performing standard DIF procedures. Independent models can be estimated in parallel by defining a parallel object with `mirtCluster`, which will help to decrease the runtime. For best results, the baseline model should contain a set of ’anchor’ items and have freely estimated hyper-parameters in the focal groups.

Usage
```r
DIF(
  MGmodel,
  which.par,
  scheme = "add",
  items2test = 1:extract.mirt(MGmodel, "nitems"),
  seq_stat = "SABIC",
)```
Wald = FALSE,
p.adjust = "none",
return_models = FALSE,
return_seq_model = FALSE,
max_run = Inf,
plotdif = FALSE,
type = "trace",
simplify = TRUE,
verbose = TRUE,
...)

Arguments

MGmodel an object returned from `multipleGroup` to be used as the reference model

which.par a character vector containing the parameter names which will be inspected for DIF

scheme type of DIF analysis to perform, either by adding or dropping constraints across groups. These can be:

'add' parameters in `which.par` will be constrained each item one at a time for items that are specified in `items2test`. This is beneficial when examining DIF from a model with parameters freely estimated across groups, and when inspecting differences via the Wald test

'drop' parameters in `which.par` will be freely estimated for items that are specified in `items2test`. This is useful when supplying an overly restrictive model and attempting to detect DIF with a slightly less restrictive model

'add_sequential' sequentially loop over the items being tested, and at the end of the loop treat DIF tests that satisfy the `seq_stat` criteria as invariant. The loop is then re-run on the remaining invariant items to determine if they are now displaying DIF in the less constrained model, and when no new invariant item is found the algorithm stops and returns the items that displayed DIF. Note that the DIF statistics are relative to this final, less constrained model which includes the DIF effects

'drop_sequential' sequentially loop over the items being tested, and at the end of the loop treat items that violate the `seq_stat` criteria as demonstrating DIF. The loop is then re-run, leaving the items that previously demonstrated DIF as variable across groups, and the remaining test items that previously showed invariance are re-tested. The algorithm stops when no more items showing DIF are found and returns the items that displayed DIF. Note that the DIF statistics are relative to this final, less constrained model which includes the DIF effects

items2test a numeric vector, or character vector containing the item names, indicating which items will be tested for DIF. In models where anchor items are known, omit them from this vector. For example, if items 1 and 2 are anchors in a 10 item test, then `items2test = 3:10` would work for testing the remaining items (important to remember when using sequential schemes)
seq_stat select a statistic to test for in the sequential schemes. Potential values are (in descending order of power) 'AIC', 'AICc', 'SABIC', 'HQ', and 'BIC'. If a numeric value is input that ranges between 0 and 1, the 'p' value will be tested (e.g., seq_stat = .05 will test for the difference of p < .05 in the add scheme, or p > .05 in the drop scheme), along with the specified p_adjust input. For models fitted with prior distributions 'DIC' is also supported, though for these models the p-value approach is not

Wald logical: perform Wald tests for DIF instead of likelihood ratio test?

p.adjust string to be passed to the p.adjust function to adjust p-values. Adjustments are located in the adj_pvals element in the returned list

return_models logical: return estimated model objects for further analysis? Default is FALSE

return_seq_model logical: on the last iteration of the sequential schemes, return the fitted multiple-group model containing the freely estimated parameters indicative of DIF? This is generally only useful when scheme = 'add_sequential'. Default is FALSE

max_run a number indicating the maximum number of cycles to perform in sequential searches. The default is to perform search until no further DIF is found

plotdif logical: create item plots for items that are displaying DIF according to the seq_stat criteria? Only available for 'add' type schemes

type the type of plot argument passed to plot(). Default is 'trace', though another good option is 'infortrace'. For ease of viewing, the facet_item argument to mirt’s plot() function is set to TRUE

simplify logical: simplify the output by returning a data.frame object with the differences between AIC, BIC, etc, as well as the chi-squared test (X2) and associated df and p-values

verbose logical print extra information to the console?

... additional arguments to be passed to multipleGroup and plot

Details

Generally, the precomputed baseline model should have been configured with two estimation properties: 1) a set of 'anchor' items, where the anchor items have various parameters that have been constrained to be equal across the groups, and 2) contain freely estimated latent mean and variance terms in all but one group (the so-called 'reference' group). These two properties help to fix the metric of the groups so that item parameter estimates do not contain latent distribution characteristics.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

multipleGroup, DRF

Examples

```r
Not run:

simulate data where group 2 has a smaller slopes and more extreme intercepts
set.seed(12345)
a1 <- a2 <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d1 <- d2 <- matrix(rnorm(15,0,.7),ncol=1)
a2[1:2,] <- a1[1:2,]/3
d1[c(1,3),] <- d2[c(1,3),]/4
head(data.frame(a.group1 = a1, a.group2 = a2, d.group1 = d1, d.group2 = d2))
itemtype <- rep('2PL', nrow(a1))
N <- 1000
dataset1 <- simdata(a1, d1, N, itemtype)
dataset2 <- simdata(a2, d2, N, itemtype, mu = .1, sigma = matrix(1.5))
dat <- rbind(dataset1, dataset2)
group <- c(rep('D1', N), rep('D2', N))

no anchors, all items tested for DIF by adding item constrains one item at a time.
define a parallel cluster (optional) to help speed up internal functions
mirtCluster()

Information matrix with Oakes' identity (not controlling for latent group differences)
NOTE: Without properly equating the groups the following example code is not testing for DIF,
but instead reflects a combination of DIF + latent-trait distribution effects
model <- multipleGroup(dat, 1, group, SE = TRUE)

Likelihood-ratio test for DIF (as well as model information)
DIF(model, c('a1', 'd'))
DIF(model, c('a1', 'd'), simplify=FALSE) # return list output

same as above, but using Wald tests with Benjamini & Hochberg adjustment
DIF(model, c('a1', 'd'), Wald = TRUE, p.adjust = 'fdr')

equate the groups by assuming the last 5 items have no DIF
itemnames <- colnames(dat)
model <- multipleGroup(dat, 1, group, SE = TRUE,
 invariance = c(itemnames[11:ncol(dat)], 'free_means', 'free_var'))

test whether adding slopes and intercepts constraints results in DIF. Plot items showing DIF
resulta1d <- DIF(model, c('a1', 'd'), plotdif = TRUE, items2test=1:10)
resulta1d

test whether adding only slope constraints results in DIF for all items
```

DIF(model, 'a1', items2test=1:10)

# Determine whether it's a1 or d parameter causing DIF (could be joint, however)
(a1s <- DIF(model, 'a1', items2test = 1:3))
(ds <- DIF(model, 'd', items2test = 1:3))

### drop down approach (freely estimating parameters across groups) when
### specifying a highly constrained model with estimated latent parameters
model_constrained <- multipleGroup(dat, 1, group,
  invariance = c(colnames(dat), 'free_means', 'free_var'))
dropdown <- DIF(model_constrained, c('a1', 'd'), scheme = 'drop')
dropdown

### sequential schemes (add constraints)

### sequential searches using SABIC as the selection criteria
# starting from completely different models
stepup <- DIF(model, c('a1', 'd'), scheme = 'add_sequential',
  items2test=1:10)
stepup

# step down procedure for highly constrained model
stepdown <- DIF(model_constrained, c('a1', 'd'), scheme = 'drop_sequential')
stepdown

# view final MG model (only useful when scheme is 'add_sequential')
updated_mod <- DIF(model, c('a1', 'd'), scheme = 'add_sequential',
  return_seq_model=TRUE)
plot(updated_mod, type='trace')

## End(Not run)

DiscreteClass-class  Class "DiscreteClass"

Description

Defines the object returned from mdirt.

Slots

  Call: function call
  Data: list of data, sometimes in different forms
  Options: list of estimation options
  Fit: a list of fit information
  Model: a list of model-based information
  ParObjects: a list of the S4 objects used during estimation
draw_parameters

OptimInfo: a list of arguments from the optimization process
Internals: a list of internal arguments for secondary computations (inspecting this object is generally not required)
vcov: a matrix represented the asymptotic covariance matrix of the parameter estimates
time: a data.frame indicating the breakdown of computation times in seconds

Methods

print signature(x = "DiscreteClass")
show signature(object = "DiscreteClass")
anova signature(object = "DiscreteClass")
coef signature(x = "DiscreteClass")
summary signature(object = "DiscreteClass")
residuals signature(object = "DiscreteClass")

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


draw_parameters Draw plausible parameter instantiations from a given model

Description

Draws plausible parameters from a model using parametric sampling (if the information matrix was computed) or via bootstrap sampling. Primarily for use with the DRF function.

Usage

draw_parameters(
  mod, 
  draws, 
  method = c("parametric", "bootstrap"), 
  redraws = 20, 
  
)
Arguments

mod estimated single or multiple-group model
draws number of draws to obtain
method type of plausible values to obtain. Can be 'parametric', for the parametric sampling scheme which uses the estimated information matrix, or 'bootstrap' to obtain values from the boot function. Default is 'parametric'
redraws number of redraws to perform when the given parameteric sample does not satisfy the upper and lower parameter bounds. If a valid set cannot be found within this number of draws then an error will be thrown

... additional arguments to be passed

Value

returns a draws x p matrix of plausible parameters, where each row corresponds to a single set

Examples

```r
Not run:
set.seed(1234)
n <- 40
N <- 500

only first 5 items as anchors
model <- 'F = 1-40
 CONSTRAINB = (1-5, a1), (1-5, d)'
a <- matrix(1, n)
d <- matrix(rnorm(n), n)
group <- c(rep('Group_1', N), rep('Group_2', N))

groups completely equal
dat1 <- simdata(a, d, N, itemtype = 'dich')
dat2 <- simdata(a, d, N, itemtype = 'dich')
dat <- rbind(dat1, dat2)
mod <- multipleGroup(dat, model, group=group, SE=TRUE,
 invariance=c('free_means', 'free_var'))

param_set <- draw_parameters(mod, 100)
head(param_set)
```

## End(Not run)
Differential Response Functioning statistics

Description

Function performs various omnibus differential item (DIF), bundle (DBF), and test (DTF) functioning procedures on an object estimated with `multipleGroup()`. The compensatory and non-compensatory statistics provided are described in Chalmers (2018), which generally can be interpreted as IRT generalizations of the SIBTEST and CSIBTEST statistics. These require the ACOV matrix to be computed in the fitted multiple-group model (otherwise, sets of plausible draws from the posterior are explicitly required).

Usage

```r
DRF(
 mod,
 draws = NULL,
 focal_items = 1L:extract.mirt(mod, "nitems"),
 param_set = NULL,
 CI = 0.95,
 npts = 1000,
 quadpts = NULL,
 theta_lim = c(-6, 6),
 Theta_nodes = NULL,
 plot = FALSE,
 DIF = FALSE,
 p.adjust = "none",
 par.strip.text = list(cex = 0.7),
 par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")),
 auto.key = list(space = "right", points = FALSE, lines = TRUE),
 ...
)
```

Arguments

- **mod**: a `multipleGroup` object which estimated only 2 groups
- **draws**: a number indicating how many draws to take to form a suitable multiple imputation or bootstrap estimate of the expected test scores (100 or more). If `boot = FALSE`, requires an estimated parameter information matrix. Returns a list containing the bootstrap/imputation distribution and null hypothesis test for the sDRF statistics
- **focal_items**: a numeric vector indicating which items to include in the DRF tests. The default uses all of the items (note that including anchors in the focal items has no effect because they are exactly equal across groups). Selecting fewer items will result in tests of 'differential bundle functioning'
param_set  an N x p matrix of parameter values drawn from the posterior (e.g., using the parametric sampling approach, bootstrap, of MCMC). If supplied, then these will be used to compute the DRF measures. Can be much more efficient to pre-compute these values if DIF, DBF, or DTF are being evaluated within the same model (especially when using the bootstrap method). See `draw_parameters`.

CI  range of confidence interval when using draws input.

npts  number of points to use for plotting. Default is 1000.

quadpts  number of quadrature nodes to use when constructing DRF statistics. Default is extracted from the input model object.

theta_lim  lower and upper limits of the latent trait (theta) to be evaluated, and is used in conjunction with quadpts and npts.

Theta_nodes  an optional matrix of Theta values to be evaluated in the draws for the sDRF statistics. However, these values are not averaged across, and instead give the bootstrap confidence intervals at the respective Theta nodes. Useful when following up a large sDRF or uDRF statistic, for example, to determine where the difference between the test curves are large (while still accounting for sampling variability). Returns a matrix with observed variability.

plot  logical; plot the 'sDRF' functions for the evaluated sDBF or sDTF values across the integration grid or, if DIF = TRUE, the selected items as a faceted plot of individual items? If plausible parameter sets were obtained/supplied then imputed confidence intervals will be included.

DIF  logical; return a list of item-level imputation properties using the DRF statistics? These can generally be used as a DIF detection method and as a graphical display for understanding DIF within each item.

p.adjust  string to be passed to the p.adjust function to adjust p-values. Adjustments are located in the adj_pvals element in the returned list. Only applicable when DIF = TRUE.

par.strip.text  plotting argument passed to lattice.

par.settings  plotting argument passed to lattice.

auto.key  plotting argument passed to lattice.

...  additional arguments to be passed to lattice.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

`multipleGroup`, `DIF`
**Examples**

```r
Not run:
set.seed(1234)
n <- 30
N <- 500

only first 5 items as anchors
model <- 'F = 1-30
 CONSTRAINT = (1-5, a1), (1-5, d)
'

a <- matrix(1, n)
d <- matrix(rnorm(n), n)
group <- c(rep('Group_1', N), rep('Group_2', N))

groups completely equal
dat1 <- simdata(a, d, N, itemtype = 'dich')
dat2 <- simdata(a, d, N, itemtype = 'dich')
dat <- rbind(dat1, dat2)
mod <- multipleGroup(dat, model, group=group, SE=TRUE,
invariance=c('free_means', 'free_var'))

plot(mod)
plot(mod, which.items = 6:10) #DBF
plot(mod, type = 'itemscore')
plot(mod, type = 'itemscore', which.items = 10:15)

DRF(mod)
DRF(mod, focal_items = 6:10) #DBF
DRF(mod, DIF=TRUE)
DRF(mod, DIF=TRUE, focal_items = 10:15)

DRF(mod, plot = TRUE)
DRF(mod, focal_items = 6:10, plot = TRUE) #DBF
DRF(mod, DIF=TRUE, plot = TRUE)
DRF(mod, DIF=TRUE, focal_items = 10:15, plot = TRUE)

mirtCluster()
DRF(mod, draws = 500)
DRF(mod, draws = 500, plot=TRUE)

pre-draw parameter set to save computations
param_set <- draw_parameters(mod, draws = 500)
DRF(mod, focal_items = 6, param_set=param_set) #DIF
DRF(mod, DIF=TRUE, param_set=param_set) #DIF
DRF(mod, focal_items = 6:10, param_set=param_set) #DBF
DRF(mod, param_set=param_set) #DTF

DRF(mod, focal_items = 6:10, draws=500) #DBF
DRF(mod, focal_items = 10:15, draws=500) #DBF

DIFs <- DRF(mod, draws = 500, DIF=TRUE)
```
print(DIFs)
DRF(mod, draws = 500, DIF=TRUE, plot=TRUE)

DIFs <- DRF(mod, draws = 500, DIF=TRUE, focal_items = 6:10)
print(DIFs)
DRF(mod, draws = 500, DIF=TRUE, focal_items = 6:10, plot = TRUE)

DRF(mod, DIF=TRUE, focal_items = 6)
DRF(mod, draws=500, DIF=TRUE, focal_items = 6)

# evaluate specific values for sDRF
Theta_nodes <- matrix(seq(-6,6,length.out = 100))
sDTF <- DRF(mod, Theta_nodes=Theta_nodes)
head(sDTF)
sDTF <- DRF(mod, Theta_nodes=Theta_nodes, draws=200)
head(sDTF)

# sDIF (isolate single item)
sDIF <- DRF(mod, Theta_nodes=Theta_nodes, focal_items=6)
head(sDIF)
sDIF <- DRF(mod, Theta_nodes=Theta_nodes, focal_items = 6, draws=200)
head(sDIF)

## --------------
## random slopes and intercepts for 15 items, and latent mean difference
## (no systematic DTF should exist, but DIF will be present)
set.seed(1234)
dat1 <- simdata(a, d, N, itemtype = 'dich', mu=.50, sigma=matrix(1.5))
dat2 <- simdata(a + c(numeric(15), rnorm(n-15, 0, .25)),
    d + c(numeric(15), rnorm(n-15, 0, .5)), N, itemtype = 'dich')
dat <- rbind(dat1, dat2)
mod1 <- multipleGroup(dat, 1, group=group)
plot(mod1)
DRF(mod1) #does not account for group differences! Need anchors

mod2 <- multipleGroup(dat, model, group=group, SE=TRUE,
    invariance=c('free_means', 'free_var'))
plot(mod2)

#significant DIF in multiple items....
# DIF(mod2, which.par=c('a1', 'd'), items2test=16:30)
DRF(mod2)
DRF(mod2, draws=500) #non-sig DTF due to item cancellation

## --------------
## systematic differing slopes and intercepts (clear DTF)
set.seed(1234)
dat1 <- simdata(a, d, N, itemtype = 'dich', mu=.50, sigma=matrix(1.5))
dat2 <- simdata(a + c(numeric(15), rnorm(n-15, 1, .25)), d + c(numeric(15), rnorm(n-15, 1, .5)),
    N, itemtype = 'dich')
dat <- rbind(dat1, dat2)
mod3 <- multipleGroup(dat, model, group=group, SE=TRUE,
plot(mod3) # visable DTF happening

# DIF(mod3, c('a1', 'd'), items2test=16:30)
DIF(mod3) # unisgned bias. Signed bias indicates group 2 scores generally higher on average
DRF(mod3, draws=500)
DRF(mod3, draws=500, plot=TRUE) # multiple DRF areas along Theta

# plot the DIF
DRF(mod3, draws=500, DIF=TRUE, plot=TRUE)

# evaluate specific values for sDRF
Theta_nodes <- matrix(seq(-6,6,length.out = 100))
sDTF <- DRF(mod3, Theta_nodes=Theta_nodes, draws=200)
head(sDTF)

# DIF
sDIF <- DRF(mod3, Theta_nodes=Theta_nodes, focal_items = 30, draws=200)
car::some(sDIF)

## ----------------------------------------------------------------
### multidimensional DTF
set.seed(1234)
n <- 50
N <- 1000

# only first 5 items as anchors within each dimension
model <- 'F1 = 1-25
    F2 = 26-50
    COV = F1*F2
    CONSTRAINB = (1-5, a1), (1-5, 26-30, d), (26-30, a2)'

a <- matrix(c(rep(1, 25), numeric(50), rep(1, 25)), n)
d <- matrix(rnorm(n), n)
group <- c(rep('Group_1', N), rep('Group_2', N))
Cov <- matrix(c(1, .5, .5, 1.5), 2)
Mean <- c(0, 0.5)

# groups completely equal
dat1 <- simdata(a, d, N, itemtype = 'dich', sigma = cov2cor(Cov))
dat2 <- simdata(a, d, N, itemtype = 'dich', sigma = Cov, mu = Mean)
dat <- rbind(dat1, dat2)
mod <- multipleGroup(dat, model, group=group, SE=TRUE,
invariance=c('free_means', 'free_var'))
coef(mod, simplify=TRUE)
plot(mod, degrees = c(45,45))
DRF(mod)

# some intercepts slightly higher in Group 2
d2 <- d
d2[c(10:15, 31:35)] <- d2[c(10:15, 31:35)] + 1
dat1 <- simdata(a, d, N, itemtype = 'dich', sigma = cov2cor(Cov))
dat2 <- simdata(a, d2, N, itemtype = 'dich', sigma = Cov, mu = Mean)
dat <- rbind(dat1, dat2)
mod <- multipleGroup(dat, model, group=group, SE=TRUE,
invariance=c('free_means', 'free_var'))
coef(mod, simplify=TRUE)
plot(mod, degrees = c(45,45))

DRF(mod)
DRF(mod, draws = 500)

## End(Not run)

**DTF**

**Differential test functioning statistics**

**Description**

Function performs various omnibus differential test functioning procedures on an object estimated
with `multipleGroup()`. If the latent means/covariances are suspected to differ then the input object
should contain a set of 'anchor' items to ensure that only differential test features are being detected
rather than group differences. Returns signed (average area above and below) and unsigned (total
area) statistics, with descriptives such as the percent average bias between group total scores for
each statistic. If a grid of Theta values is passed, these can be evaluated as well to determine
specific DTF location effects. For best results, the baseline model should contain a set of 'anchor'
items and have freely estimated hyper-parameters in the focal groups. See `DIF` for details.

**Usage**

```r
DTF(
 mod,
 draws = NULL,
 CI = 0.95,
 npts = 1000,
 theta_lim = c(-6, 6),
 Theta_nodes = NULL,
 plot = "none",
 auto.key = list(space = "right", points = FALSE, lines = TRUE),
 ...
)
```

**Arguments**

- `mod` a multipleGroup object which estimated only 2 groups
- `draws` a number indicating how many draws to take to form a suitable multiple imputation estimate of the expected test scores (usually 100 or more). Returns a list containing the imputation distribution and null hypothesis test for the sDTF statistic
DTF

CI range of confidence interval when using draws input
npts number of points to use in the integration. Default is 1000
theta_lim lower and upper limits of the latent trait (theta) to be evaluated, and is used in conjunction with npts
Theta_nodes an optional matrix of Theta values to be evaluated in the draws for the sDTF statistic. However, these values are not averaged across, and instead give the bootstrap confidence intervals at the respective Theta nodes. Useful when following up a large uDTF/sDTF statistic to determine where the difference between the test curves are large (while still accounting for sampling variability). Returns a matrix with observed variability
plot a character vector indicating which plot to draw. Possible values are 'none', 'func' for the test score functions, and 'sDTF' for the evaluated sDTF values across the integration grid. Each plot is drawn with imputed confidence envelopes
auto.key logical; automatically generate key in lattice plot?
... additional arguments to be passed to lattice and boot

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

multipleGroup, DIF

Examples

```r
Not run:
set.seed(1234)
n <- 30
N <- 500

only first 5 items as anchors
model <- 'F = 1-30
 CONSTRANB = (1-5, a1), (1-5, d)'

a <- matrix(1, n)
d <- matrix(rnorm(n), n)
group <- c(rep('Group_1', N), rep('Group_2', N))
```
## groups completely equal

dat1 <- simdata(a, d, N, itemtype = '2PL')
dat2 <- simdata(a, d, N, itemtype = '2PL')
dat <- rbind(dat1, dat2)

mod <- multipleGroup(dat, model, group=group, SE=TRUE,
                      invariance=c('free_means', 'free_var'))

plot(mod)

DTF(mod)
mirtCluster()

DTF(mod, draws = 1000) #95% C.I. for sDTF containing 0. uDTF is very small
DTF(mod, draws = 1000, plot='sDTF') #sDTF 95% C.I.'s across Theta always include 0

## random slopes and intercepts for 15 items, and latent mean difference
## (no systematic DTF should exist, but DIF will be present)
set.seed(1234)
dat1 <- simdata(a, d, N, itemtype = '2PL', mu=.50, sigma=matrix(1.5))
dat2 <- simdata(a + c(numeric(15), runif(n-15, -.2, .2)),
                d + c(numeric(15), runif(n-15, -.5, .5)), N, itemtype = '2PL')
dat <- rbind(dat1, dat2)

mod1 <- multipleGroup(dat, 1, group=group)
plot(mod1) #does not account for group differences! Need anchors

mod2 <- multipleGroup(dat, model, group=group, SE=TRUE,
                      invariance=c('free_means', 'free_var'))

plot(mod2)

#significant DIF in multiple items....
# DIF(mod2, which.par=c('a1', 'd'), items2test=16:30)
DTF(mod2)

DTF(mod2, draws=1000) #non-sig DTF due to item cancellation

## systematic differing slopes and intercepts (clear DTF)
dat1 <- simdata(a, d, N, itemtype = '2PL', mu=.50, sigma=matrix(1.5))
dat2 <- simdata(a + c(numeric(15), rnorm(n-15, 1, .25)),
                d + c(numeric(15), rnorm(n-15, 1, .5)), N, itemtype = '2PL')
dat <- rbind(dat1, dat2)

mod3 <- multipleGroup(dat, model, group=group, SE=TRUE,
                      invariance=c('free_means', 'free_var'))

plot(mod3) #visable DTF happening

# DIF(mod3, c('a1', 'd'), items2test=16:30)
DTF(mod3) #unsined bias. Signed bias indicates group 2 scores generally higher on average

DTF(mod3, draws=1000)
DTF(mod3, draws=1000, plot='func')

# evaluate specific values for sDTF
Theta_nodes <- matrix(seq(-6,6,length.out = 100))
sDTF <- DTF(mod3, Theta_nodes=Theta_nodes)
empirical_ES

Empirical effect sizes based on latent trait estimates

Description

Computes effect size measures of differential item functioning and differential test/bundle functioning based on expected scores from Meade (2010). Item parameters from both reference and focal group are used in conjunction with focal group empirical theta estimates (and an assumed normally distributed theta) to compute expected scores.

Usage

empirical_ES(
  mod,
  Theta.focal = NULL,
  focal_items = 1L:extract.mirt(mod, "nitems"),
  DIF = TRUE,
  npts = 61,
  theta_lim = c(-6, 6),
  plot = FALSE,
  type = "b",
  par.strip.text = list(cex = 0.7),
  par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")),
  ...
)

Arguments

mod
  a multipleGroup object which estimated only 2 groups. The first group in this object is assumed to be the reference group, which conforms to the invariance arguments in multipleGroup

Theta.focal
  an optional matrix of Theta values from the focal group to be evaluated. If not supplied the default values to fscores will be used in conjunction with the ... arguments passed

focal_items
  a numeric vector indicating which items to include the tests. The default uses all of the items. Selecting fewer items will result in tests of 'differential bundle functioning' when DIF = FALSE

DIF
  logical; return a data.frame of item-level imputation properties? If FALSE, only DBF and DTF statistics will be reported
empirical_ES

npts number of points to use in the integration. Default is 61
theta_lim lower and upper limits of the latent trait (theta) to be evaluated, and is used in conjunction with npts
plot logical; plot expected scores of items/test where expected scores are computed using focal group thetas and both focal and reference group item parameters
type type of objects to draw in lattice; default plots both points and lines
par.strip.text plotting argument passed to lattice
par.settings plotting argument passed to lattice
... additional arguments to be passed to fscores and xyplot

DIF

The default DIF = TRUE produces several effect sizes indices at the item level. Signed indices allow DIF favoring the focal group at one point on the theta distribution to cancel DIF favoring the reference group at another point on the theta distribution. Unsigned indices take the absolute value before summing or averaging, thus not allowing cancellation of DIF across theta.

SIDS Signed Item Difference in the Sample. The average difference in expected scores across the focal sample using both focal and reference group item parameters.
UIDS Unsigned Item Difference in the Sample. Same as SIDS except absolute value of expected scores is taken prior to averaging across the sample.
D-Max The maximum difference in expected scores in the sample.
ESSD Expected Score Standardized Difference. Cohen’s D for difference in expected scores.
SIDN Signed Item Difference in a Normal distribution. Identical to SIDS but averaged across a normal distribution rather than the sample.
UIDN Unsigned Item Difference in a Normal distribution. Identical to UIDS but averaged across a normal distribution rather than the sample.

DBF/DTF

DIF = FALSE produces a series of test/bundle-level indices that are based on item-level indices.

STDS Signed Test Differences in the Sample. The sum of the SIDS across items.
UTDS Unsigned Test Differences in the Sample. The sum of the UIDS across items.
Stark’s DTFR Stark’s version of STDS using a normal distribution rather than sample estimated thetas.
UDTFR Unsigned Expected Test Scores Differences in the Sample. The difference in observed summed scale scores expected, on average, across a hypothetical focal group with a normally distributed theta, had DF been uniform in nature for all items
UETSDS Unsigned Expected Test Score Differences in the Sample. The hypothetical difference expected scale scores that would have been present if scale-level DF had been uniform across respondents (i.e., always favoring the focal group).
UETSDN Identical to UETSDS but computed using a normal distribution.
Test D-Max Maximum expected test score differences in the sample.
ETSSD Expected Test Score Standardized Difference. Cohen’s D for expected test scores.
Author(s)

Adam Meade and Phil Chalmers <rphilip.chalmers@gmail.com>

References


Examples

```r
Not run:
no DIF
set.seed(12345)
a <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d <- matrix(rnorm(15,0,.7),ncol=1)
itemtype <- rep('2PL', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5))
dat <- rbind(dataset1, dataset2)

ensure 'Ref' is the first group (and therefore reference group during estimation)
group <- factor(c(rep('Ref', N), rep('Focal', N)), levels = c('Ref', 'Focal'))

mod <- multipleGroup(dat, 1, group = group,
 invariance = c(colnames(dat)[1:5], 'free_means', 'free_var'))
coef(mod, simplify=TRUE)

empirical_ES(mod)
empirical_ES(mod, DIF=FALSE)
empirical_ES(mod, DIF=FALSE, focal_items = 10:15)

empirical_ES(mod, plot=TRUE)
empirical_ES(mod, plot=TRUE, DIF=FALSE)
```

###---------------------------------------------

# DIF

```r
set.seed(12345)
a1 <- a2 <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d1 <- d2 <- matrix(rnorm(15,0,.7),ncol=1)
a2[10:15,] <- a2[10:15,] + rnorm(6, 0, .3)
d2[10:15,] <- d2[10:15,] + rnorm(6, 0, .3)
itemtype <- rep('dich', nrow(a1))
N <- 1000
dataset1 <- simdata(a1, d1, N, itemtype)
dataset2 <- simdata(a2, d2, N, itemtype, mu = .1, sigma = matrix(1.5))
dat <- rbind(dataset1, dataset2)
group <- factor(c(rep('Ref', N), rep('Focal', N)), levels = c('Ref', 'Focal'))
```
```r
mod <- multipleGroup(dat, 1, group = group,
 invariance = c(colnames(dat)[1:5], 'free_means', 'free_var'))
coef(mod, simplify=TRUE)

empirical_ES(mod)
empirical_ES(mod, DIF = FALSE)
empirical_ES(mod, plot=TRUE)
empirical_ES(mod, plot=TRUE, DIF=FALSE)
```

## End(Not run)

### empirical_plot

**Function to generate empirical unidimensional item and test plots**

#### Description

Given a dataset containing item responses this function will construct empirical graphics using the observed responses to each item conditioned on the total score. When individual item plots are requested then the total score will be formed without the item of interest (i.e., the total score without that item).

#### Usage

```r
empirical_plot(
 data,
 which.items = NULL,
 smooth = FALSE,
 formula = resp ~ s(TS, k = 5),
 main = NULL,
 par.strip.text = list(cex = 0.7),
 boxplot = FALSE,
 par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")),
 auto.key = list(space = "right", points = FALSE, lines = TRUE),
 ...
)
```

#### Arguments

- **data**: a data.frame or matrix of item responses (see `mirt` for typical input)
- **which.items**: a numeric vector indicating which items to plot in a faceted image plot. If NULL then a empirical test plot will be constructed instead
- **smooth**: logical: include a GAM smoother instead of the raw proportions? Default is FALSE
- **formula**: formula used for the GAM smoother
empirical_plot

main the main title for the plot. If NULL an internal default will be used

par.strip.text plotting argument passed to lattice

boxplot logical: use a boxplot to display the marginal total score differences instead of scatter plots of proportions? Default is FALSE

par.settings plotting argument passed to lattice

auto.key plotting argument passed to lattice

... additional arguments to be passed to lattice and coef()

Details

Note that these types of plots should only be used for unidimensional tests with monotonically increasing item response functions. If monotonicity should be true for all items, however, then these plots may serve as a visual diagnostic tool so long as the majority of items are indeed monotonic.

References


See Also

itemplot, itemGAM

Examples

## Not run:

SAT12[SAT12 == 8] <- NA
data <- key2binary(SAT12,
   key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))

#test plot
empirical_plot(data)

#items 1, 2 and 5
empirical_plot(data, c(1, 2, 5))
empirical_plot(data, c(1, 2, 5), smooth = TRUE)
empirical_plot(data, c(1, 2, 5), boxplot = TRUE)

# replace weird looking items with unscored versions for diagnostics
empirical_plot(data, 32)
data[,32] <- SAT12[,32]
empirical_plot(data, 32)
empirical_plot(data, 32, smooth = TRUE)

## End(Not run)
empirical_rxx  Function to calculate the empirical (marginal) reliability

Description
Given secondary latent trait estimates and their associated standard errors returned from `fscores`, compute the empirical reliability.

Usage
empirical_rxx(Theta_SE)

Arguments
Theta_SE  a matrix of latent trait estimates returned from `fscores` with the options `full.scores = TRUE` and `full.scores.SE = TRUE`

Author(s)
Phil Chalmers <rphilip.chalmers@gmail.com>

References

See Also
`fscores, marginal_rxx`

Examples
```r
Not run:
dat <- expand.table(deAyala)
mod <- mirt(dat, 1)
theta_se <- fscores(mod, full.scores.SE = TRUE)
empirical_rxx(theta_se)
theta_se <- fscores(mod, full.scores.SE = TRUE, method = 'ML')
empirical_rxx(theta_se)
End(Not run)
```

## End(Not run)
estfun.AllModelClass  Extract Empirical Estimating Functions

Description

A function for extracting the empirical estimating functions of a fitted `mirt`, `multipleGroup` or `bfactor` model. This is the derivative of the log-likelihood with respect to the parameter vector, evaluated at the observed (case-wise) data. In other words, this function returns the case-wise scores, evaluated at the fitted model parameters. Currently, models fitted via the EM or BL method are supported. For the computations, the internal Theta grid of the model is being used which was already used during the estimation of the model itself along with its matching normalized density.

Usage

```r
estfun.AllModelClass(
 x,
 weights = extract.mirt(x, "survey.weights"),
 centering = FALSE
)
```

Arguments

- **x**: a fitted model object of class `SingleGroupClass` or `MultipleGroupClass`
- **weights**: by default, the `survey.weights` which were (optionally) specified when fitting the model are included to calculate the scores. If specified by the user, this should be a numeric vector of length equal to the total sample size. Note that if not all cases were weighted equally when fitting the model, the weights must be corrected by taking their square root if the scores are being used to compute the outer product of gradients (OPG) estimate of the variance-covariance matrix (see examples below).
- **centering**: a boolean variable that allows the centering of the case-wise scores (i.e., setting their expected values to 0). If the case-wise scores were obtained from maximum likelihood estimates, this setting does not affect the result.

Value

An n x k matrix corresponding to n observations and k parameters

Author(s)

Lennart Schneider <lennart.sch@web.de>; centering argument contributed by Rudolf Debelak (<rudolf.debelak@psychologie.uzh.ch>)

See Also

`mirt`, `multipleGroup`, `bfactor`
Examples

```r
Not run:
fit a 2PL on the LSAT7 data and get the scores
mod1 <- mirt(expand.table(LSAT7), 1, SE = TRUE, SE.type = "crossprod")
sc1 <- estfun.AllModelClass(mod1)
get the gradient
colSums(sc1)
calculate the OPG estimate of the variance-covariance matrix "by hand"
vc1 <- vcov(mod1)
all.equal(crossprod(sc1), chol2inv(chol(vc1)), check.attributes = FALSE)

fit a multiple group 2PL and do the same as above
group <- rep(c("G1", "G2"), 500)
mod2 <- multipleGroup(expand.table(LSAT7), 1, group, SE = TRUE,
 SE.type = "crossprod")
sc2 <- estfun.AllModelClass(mod2)
colSums(sc2)
vc2 <- vcov(mod2)
all.equal(crossprod(sc2), chol2inv(chol(vc2)), check.attributes = FALSE)

fit a bifactor model with 2 specific factors and do the same as above
mod3 <- bfactor(expand.table(LSAT7), c(2, 2, 1, 1, 2), SE = TRUE,
 SE.type = "crossprod")
sc3 <- estfun.AllModelClass(mod3)
colSums(sc3)
vc3 <- vcov(mod3)
all.equal(crossprod(sc3), chol2inv(chol(vc3)), check.attributes = FALSE)

fit a 2PL not weighting all cases equally
survey.weights <- c(rep(2, sum(LSAT7$freq) / 2), rep(1, sum(LSAT7$freq) / 2))
survey.weights <- survey.weights / sum(survey.weights) * sum(LSAT7$freq)
mod4 <- mirt(expand.table(LSAT7), 1, SE = TRUE, SE.type = "crossprod",
 weights = survey.weights)
sc4 <- estfun.AllModelClass(mod4,
 weights = extract.mirt(mod4, "survey.weights"))
get the gradient
colSums(sc4)
to calculate the OPG estimate of the variance-covariance matrix "by hand",
the weights must be adjusted by taking their square root
sc4_crp <- estfun.AllModelClass(mod4,
 weights = sqrt(extract.mirt(mod4, "survey.weights")))
vc4 <- vcov(mod4)
all.equal(crossprod(sc4_crp), chol2inv(chol(vc4)), check.attributes = FALSE)

End(Not run)
```
**Description**

The `expand.table` function expands a summary table of unique response patterns to a full sized data-set. By default the response frequencies are assumed to be on rightmost column of the input data, though this can be modified.

**Usage**

```r
expand.table(tabdata, freq = colnames(tabdata)[ncol(tabdata)], sample = FALSE)
```

**Arguments**

- `tabdata`: An object of class `data.frame` or `matrix` with the unique response patterns and the number of frequencies in the rightmost column (though see `freq` for details on how to omit this column).
- `freq`: either a character vector specifying the column in `tabdata` to be used as the frequency count indicator for each response pattern (defaults to the right-most column) or a integer vector of length `nrow(tabdata)` specifying the frequency counts. When using the latter approach the `tabdata` input should not include any information regarding the counts, and instead should only include the unique response patterns themselves.
- `sample`: logical; randomly switch the rows in the expanded table? This does not change the expanded data, only the row locations.

**Value**

Returns a numeric matrix with all the response patterns.

**Author(s)**

Phil Chalmers <rphilip.chalmers@gmail.com>

**References**


**Examples**

```r
data(LSAT7)
head(LSAT7) # frequency in right-most column
LSAT7full <- expand.table(LSAT7)
head(LSAT7full)
dim(LSAT7full)

randomly switch rows in the expanded response table
LSAT7samp <- expand.table(LSAT7, sample = TRUE)
head(LSAT7samp)
colMeans(LSAT7full)
colMeans(LSAT7samp) #equal
```
## Not run:
# Generate data from separate response pattern matrix and freq vector
# The following uses Table 2.1 from de Ayala (2009)
f <- c(691, 2280, 242, 235, 158, 235, 1685, 1053, 134, 462, 92, 65, 571, 79, 87, 41, 1682, 702,
       370, 63, 626, 412, 166, 52, 28, 15, 2095, 1219, 500, 187, 40, 3385)

pat <- matrix(c(0, 0, 0, 0, 0,
               1, 0, 0, 0, 0,
               0, 1, 0, 0, 0,
               0, 0, 1, 0, 0,
               0, 0, 0, 1, 0,
               0, 0, 0, 0, 1,
               1, 1, 0, 0, 0,
               1, 0, 1, 0, 0,
               0, 1, 1, 0, 0,
               1, 0, 0, 1, 0,
               0, 1, 0, 1, 0,
               0, 0, 1, 1, 0,
               1, 0, 0, 0, 1,
               0, 1, 0, 0, 1,
               0, 0, 1, 0, 1,
               0, 0, 0, 1, 1,
               1, 1, 1, 0, 0,
               1, 1, 0, 1, 0,
               1, 0, 1, 1, 0,
               0, 1, 1, 1, 0,
               1, 1, 0, 0, 1,
               1, 0, 1, 0, 1,
               1, 0, 0, 1, 1,
               0, 1, 1, 0, 1,
               0, 0, 1, 1, 1,
               1, 1, 1, 1, 0,
               1, 1, 1, 0, 1,
               1, 1, 1, 1, 1),
   ncol=5, byrow=TRUE)

colnames(pat) <- paste0('Item.', 1:5)
head(pat)

table2.1 <- expand.table(pat, freq = f)
dim(table2.1)

## End(Not run)
expected.item  

Function to calculate expected value of item

Description

Given an internal mirt object extracted from an estimated model compute the expected value for an item given the ability parameter(s).

Usage

expected.item(x, Theta, min = 0)

Arguments

x  
an extracted internal mirt object containing item information (see extract.item)
Theta  
a vector (unidimensional) or matrix (multidimensional) of latent trait values
min  
a constant value added to the expected values indicating the lowest theoretical category. Default is 0

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

extract.item, expected.test

Examples

mod <- mirt(Science, 1)
extr.2 <- extract.item(mod, 2)
Theta <- matrix(seq(-6, 6, length.out=200))
expected <- expected.item(extr.2, Theta, min(Science[,1])) #min() of first item
head(data.frame(expected, Theta=Theta))
expected.test  Function to calculate expected test score

Description

Given an estimated model compute the expected test score. Returns the expected values in the same form as the data used to estimate the model.

Usage

expected.test(
  x,
  Theta,
  group = NULL,
  mins = TRUE,
  individual = FALSE,
  which.items = NULL
)

Arguments

x       an estimated mirt object
Theta    a matrix of latent trait values
group    a number signifying which group the item should be extracted from (applies to 'MultipleGroupClass' objects only)
mins     logical; include the minimum value constants in the dataset. If FALSE, the expected values for each item are determined from the scoring 0:(ncat-1)
individual    logical; return tracelines for individual items?
which.items an integer vector indicating which items to include in the expected test score. Default uses all possible items

References


See Also

extpected.item

Examples

## Not run:
dat <- expand.table(deAyala)
model <- 'F = 1-5
```r
CONSTRAIN = (1-5, a1)'
mod <- mirt(dat, model)

Theta <- matrix(seq(-6,6,.01))
tscore <- expected.test(mod, Theta)
tail(cbind(Theta, tscore))

use only first two items (i.e., a bundle)
bscore <- expected.test(mod, Theta, which.items = 1:2)
tail(cbind(Theta, bscore))

End(Not run)
```

---

**extract.group**

*Extract a group from a multiple group mirt object*

**Description**

Extract a single group from an object defined by `multipleGroup`.

**Usage**

```r
extract.group(x, group)
```

**Arguments**

- `x`: mirt model of class 'MultipleGroupClass'
- `group`: the name of the group to extract

**Author(s)**

Phil Chalmers <rphilip.chalmers@gmail.com>

**References**


**See Also**

`extract.item, extract.mirt`
Examples

```r
Not run:
set.seed(12345)
a <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d <- matrix(rnorm(15,0,.7),ncol=1)
itemtype <- rep('2PL', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5))
dat <- rbind(dataset1, dataset2)
group <- c(rep('D1', N), rep('D2', N))
models <- 'F1 = 1-15'
mod_configural <- multipleGroup(dat, models, group = group)
group.1 <- extract.group(mod_configural, 'D1') #extract first group
summary(group.1)
plot(group.1)
End(Not run)
```

extract.item

**Extract an item object from mirt objects**

### Description

Extract the internal mirt objects from any estimated model.

### Usage

```r
extract.item(x, item, group = NULL, drop.zeros = FALSE)
```

### Arguments

- **x**: mirt model of class `SingleGroupClass` or `MultipleGroupClass`
- **item**: a number or character signifying which item to extract
- **group**: a number signifying which group the item should be extracted from (applies to `MultipleGroupClass` only)
- **drop.zeros**: logical; drop slope values that are numerically close to zero to reduce dimensionality? Useful in objects returned from `bfactor` or other confirmatory models that contain several zero slopes

### References

extract.mirt

See Also

extract.group, extract.mirt

Examples

## Not run:
mod <- mirt(Science, 1)
extr.1 <- extract.item(mod, 1)

## End(Not run)

extract.mirt Extract various elements from estimated model objects

Description

A generic function to extract the internal objects from estimated models.

Usage

extract.mirt(x, what)

Arguments

x mirt model of class 'SingleGroupClass', 'MultipleGroupClass', 'MixedClass' or 'DiscreteGroupClass'
what a string indicating what to extract

Details

Objects which can be extracted from mirt objects include:

logLik observed log-likelihood
logPrior log term contributed by prior parameter distributions
G2 goodness of fit statistic
df degrees of freedom
p p-value for G2 statistic
RMSEA root mean-square error of approximation based on G2
CFI CFI fit statistic
TLI TLI fit statistic
AIC AIC
AICc corrected AIC
BIC BIC
SABIC  sample size adjusted BIC
DIC  DIC
HQ  HQ
F  unrotated standardized loadings matrix
h2  factor communality estimates
LLhistory  EM log-likelihood history
tabdata  a tabular version of the raw response data input. Frequencies are stored in freq
freq  frequencies associated with tabdata
K  an integer vector indicating the number of unique elements for each item
mins  an integer vector indicating the lowest category found in the input data
model  input model syntax
method  estimation method used
itemtype  a vector of item types for each respective item (e.g., 'graded', '2PL', etc)
itemnames  a vector of item names from the input data
factorNames  a vector of factor names from the model definition
rowID  an integer vector indicating all valid row numbers used in the model estimation (when all cases are used this will be 1:nrow(data)). Mostly useful when the option technical = list(removeEmptyRows = TRUE) was passed
data  raw input data of item responses
covdata  raw input data of data used as covariates
tabdatalong  similar to tabdata, however the responses have been transformed into dummy coded variables
fulldatalong  analogous to tabdatafull, but for the raw input data instead of the tabulated frequencies
exp_resp  expected probability of the unique response patterns
survey.weights  if supplied, the vector of survey weights used during estimation (NULL if missing)
converged  a logical value indicating whether the model terminated within the convergence criteria
iterations  number of iterations it took to reach the convergence criteria
nest  number of freely estimated parameters
parvec  vector containing uniquely estimated parameters
vcov  parameter covariance matrix (associated with parvec)
condnum  the condition number of the Hessian (if computed). Otherwise NA
constrain  a list of item parameter constraints to indicate which item parameters were equal during estimation
Prior  prior density distribution for the latent traits
key  if supplied, the data scoring key
nfact  number of latent traits/factors
nitems  number of items
**ngroups** number of groups

**groupNames** character vector of unique group names

**group** a character vector indicating the group membership

**secondordertest** a logical indicating whether the model passed the second-order test based on the Hessian matrix. Indicates whether model is a potential local maximum solution

**SEMconv** logical; check whether the supplemented EM information matrix converged. Will be `NA` if not applicable

**time** estimation time, broken into different sections

**Author(s)**

Phil Chalmers <rphilip.chalmers@gmail.com>

**References**


**See Also**

`extract.group, extract.item, mod2values`

**Examples**

```r
Not run:
mod <- mirt(Science, 1)

extract.mirt(mod, 'logLik')
extract.mirt(mod, 'F')

multiple group model
grp <- rep(c('G1', 'G2'), each = nrow(Science)/2)
mod2 <- multipleGroup(Science, 1, grp)

grp1 <- extract.group(mod2, 1) # extract single group model
extract.mirt(mod2, 'parvec')
extract.mirt(grp1, 'parvec')

End(Not run)
```
fixedCalib

**Fixed-item calibration method**

**Description**

Implements the set of fixed-item calibration methods described by Kim (2006). The initial calibrated model must be fitted via `mirt`, is currently limited to unidimensional models only, and should only be utilized when the new set of responses are obtained from a population with similar distributional characteristics in the latent traits. For more flexible calibration of items, including a fixed-item calibration variant involving anchor items for equating, see `multipleGroup`.

**Usage**

```r
fixedCalib(
 data, # new data to be used for calibration. Note that to be consistent with the mod object, observed responses/NA placeholders must be included to link the item names used in the original mod definition (i.e., `extract.mirt(mod, what = 'itemnames')`)
 model = 1, # type of model to fit for the complete dataset (not that for the fixed items in old_mod the factor loadings/constraints specified by the potential `mirt.model` specification is not relevant)
 old_mod, # a model of class SingleGroupClass fitted using `mirt`
 PAU = "MWU", # prior ability update (PAU) approach. Supports none ("NWU"), one ("OWU"), and many ("MWU")
 NEMC = "MEM", # number of EM cycles (NEMC) to use for the to-be-estimated parameters. Supports one ("OEM") and many ("MEM")
 technical = list(), # list of technical estimation arguments (see `mirt` for details)
 ... # additional arguments to pass to `mirt`
)
```

**Arguments**

- **data**: new data to be used for calibration. Note that to be consistent with the `mod` object, observed responses/NA placeholders must be included to link the item names used in the original `mod` definition (i.e., `extract.mirt(mod, what = 'itemnames')`)
- **model**: type of model to fit for the complete dataset (not that for the fixed items in `old_mod` the factor loadings/constraints specified by the potential `mirt.model` specification is not relevant)
- **old_mod**: a model of class `SingleGroupClass` fitted using `mirt`
- **PAU**: prior ability update (PAU) approach. Supports none ("NWU"), one ("OWU"), and many ("MWU")
- **NEMC**: number of EM cycles (NEMC) to use for the to-be-estimated parameters. Supports one ("OEM") and many ("MEM")
- **technical**: list of technical estimation arguments (see `mirt` for details)
- **...**: additional arguments to pass to `mirt`

**References**


**See Also**

- `mirt`, `multipleGroup`
Examples

```r
Not run:

single factor
set.seed(12345)
J <- 50
a <- matrix(abs(rnorm(J,1,.3)), ncol=1)
d <- matrix(rnorm(J,0,.7),ncol=1)
itemtype <- rep('2PL', nrow(a))

calibration data theta ~ N(0,1)
N <- 3000
dataset1 <- simdata(a, d, N = N, itemtype=itemtype)

new data (again, theta ~ N(0,1))
dataset2 <- simdata(a, d, N = 1000, itemtype=itemtype)

last 40% of experimental items not given to calibration group
(unobserved; hence removed)
dataset1 <- dataset1[-c(J:(J*.6))]
head(dataset1)

assume first 60% of items not given to new group
dataset2[,colnames(dataset1)] <- NA
head(dataset2)

calibrated model from dataset1 only
mod <- mirt(dataset1, model = 1)
coef(mod, simplify=TRUE)

data.frame(coef(NWU_OEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d)
plot(NWU_OEM, type = 'empiricalhist')

No Prior Weights Updating and Multiple EM Cycles (NWU-MEM)
NWU_MEM <- fixedCalib(dataset2, model = 1, old_mod = mod, PAU = 'NWU')
coef(NWU_MEM, simplify=TRUE)
data.frame(coef(NWU_MEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d)
plot(NWU_MEM, type = 'empiricalhist')

One Prior Weights Updating and One EM Cycle (OWU-OEM)
OWU_OEM <- fixedCalib(dataset2, model = 1, old_mod = mod, PAU = 'OWU', NEMC = "OEM")
coef(OWU_OEM, simplify=TRUE)
data.frame(coef(OWU_OEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d)
plot(OWU_OEM, type = 'empiricalhist')

One Prior Weights Updating and Multiple EM Cycles (OWU-MEM)
OWU_MEM <- fixedCalib(dataset2, model = 1, old_mod = mod, PAU = 'OWU')
coef(OWU_MEM, simplify=TRUE)
data.frame(coef(OWU_MEM, simplify=TRUE)$items[,c('a1','d')], pop_a1=a, pop_d=d)
plot(OWU_MEM, type = 'empiricalhist')
```

fixef

Compute latent regression fixed effect expected values

Description

Create expected values for fixed effects parameters in latent regression models.

Usage

fixef(x)

Arguments

x

an estimated model object from the mixedmirt or mirt function

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

mirt,mixedmirt
Examples

```r
Not run:

simulate data
set.seed(1234)
N <- 1000

covariates
X1 <- rnorm(N); X2 <- rnorm(N)
covdata <- data.frame(X1, X2)
Theta <- matrix(0.5 * X1 + -1 * X2 + rnorm(N, sd = 0.5))

items and response data
a <- matrix(1, 20); d <- matrix(rnorm(20))
dat <- simdata(a, d, 1000, itemtype = '2PL', Theta=Theta)

conditional model using X1 and X2 as predictors of Theta
mod1 <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2)

latent regression fixed effects (i.e., expected values)
fe <- fixef(mod1)
head(fe)

with mixedmirt()
mod1b <- mixedmirt(dat, covdata, 1, lr.fixed = ~ X1 + X2, fixed = ~ 0 + items)
fe2 <- fixef(mod1b)
head(fe2)

End(Not run)
```

### fscores

Compute factor score estimates (a.k.a, ability estimates, latent trait estimates, etc)

**Description**

Computes MAP, EAP, ML (Embretson & Reise, 2000), EAP for sum-scores (Thissen et al., 1995), or WLE (Warm, 1989) factor scores with a multivariate normal prior distribution using equally spaced quadrature. EAP scores for models with more than three factors are generally not recommended since the integration grid becomes very large, resulting in slower estimation and less precision if the `quadpts` are too low. Therefore, MAP scores should be used instead of EAP scores for higher dimensional models. Multiple imputation variants are possible for each estimator if a parameter information matrix was computed, which are useful if the sample size/number of items were small. As well, if the model contained latent regression predictors this information will be used in computing MAP and EAP estimates (for these models, `full.scores=TRUE` will always be used). Finally, plausible value imputation is also available, and will also account for latent regression predictor effects.
Usage

fscores(
  object,
  method = "EAP",
  full.scores = TRUE,
  rotate = "oblimin",
  Target = NULL,
  response.pattern = NULL,
  append_response.pattern = TRUE,
  na.rm = FALSE,
  plausible.draws = 0,
  plausible.type = "normal",
  quadpts = NULL,
  returnER = FALSE,
  return.acov = FALSE,
  mean = NULL,
  cov = NULL,
  verbose = TRUE,
  full.scores.SE = FALSE,
  theta_lim = c(-6, 6),
  MI = 0,
  use_dentype_estimate = FALSE,
  QMC = FALSE,
  custom_den = NULL,
  custom_theta = NULL,
  min_expected = 1,
  max_theta = 20,
  start = NULL,
  ...
)

Arguments

- **object**: a computed model object of class SingleGroupClass, MultipleGroupClass, or DiscreteClass
- **method**: type of factor score estimation method. Can be:
  - "EAP" for the expected a-posteriori (default)
  - "MAP" for the maximum a-posteriori (i.e, Bayes modal)
  - "ML" for maximum likelihood
  - "WLE" for weighted likelihood estimation
  - "EAPsum" for the expected a-posteriori for each sum score
  - "plausible" for a single plausible value imputation for each case. This is equivalent to setting plausible.draws = 1
  - "classify" for the posteriori classification probabilities (only applicable when the input model was of class MixtureClass)
full.scores if FALSE then a summary table with factor scores for each unique pattern is displayed. Otherwise, a matrix of factor scores for each response pattern in the data is returned (default)

rotate prior rotation to be used when estimating the factor scores. See summary-method for details. If the object is not an exploratory model then this argument is ignored

Target target rotation; see summary-method for details

response.pattern an optional argument used to calculate the factor scores and standard errors for a given response vector or matrix/data.frame

append_response.pattern logical; should the inputs from response.pattern also be appended to the factor score output?

na.rm logical; remove rows with any missing values? This is generally not required due to the nature of computing factors scores, however for the "EAPsum" method this may be necessary to ensure that the sum-scores correspond to the same composite score

plausible.draws number of plausible values to draw for future researchers to perform secondary analyses of the latent trait scores. Typically used in conjunction with latent regression predictors (see mirt for details), but can also be generated when no predictor variables were modeled. If plausible.draws is greater than 0 a list of plausible values will be returned

plausible.type type of plausible values to obtain. Can be either 'normal' (default) to use a normal approximation based on the ACOV matrix, or 'MH' to obtain Metropolis-Hastings samples from the posterior (silently passes object to mirt, therefore arguments like technical can be supplied to increase the number of burn-in draws and discarded samples)

quadpts number of quadratures to use per dimension. If not specified, a suitable one will be created which decreases as the number of dimensions increases (and therefore for estimates such as EAP, will be less accurate). This is determined from the switch statement quadpts <- switch(as.character(nfact), '1' = 61, '2' = 31, '3' = 15, '4' = 9, '5' = 7, 3)

returnER logical; return empirical reliability (also known as marginal reliability) estimates as a numeric values?

return.acov logical; return a list containing covariance matrices instead of factors scores? impute = TRUE not supported with this option

mean a vector for custom latent variable means. If NULL, the default for 'group' values from the computed mirt object will be used

cov a custom matrix of the latent variable covariance matrix. If NULL, the default for 'group' values from the computed mirt object will be used

verbose logical; print verbose output messages?

full.scores.SE logical; when full.scores == TRUE, also return the standard errors associated with each respondent? Default is FALSE
theta_lim: lower and upper range to evaluate latent trait integral for each dimension. If omitted, a range will be generated automatically based on the number of dimensions.

MI: a number indicating how many multiple imputation draws to perform. Default is 0, indicating that no MI draws will be performed.

use_dens_type_estimate: logical; if the density of the latent trait was estimated in the model (e.g., via Davidian curves or empirical histograms), should this information be used to compute the latent trait estimates? Only applicable for EAP-based estimates (EAP, EAPsum, and plausible).

QMC: logical; use quasi-Monte Carlo integration? If quadpts is omitted the default number of nodes is 5000.

custom_den: a function used to define the integration density (if required). The NULL default assumes that the multivariate normal distribution with the 'GroupPars' hyper-parameters are used. At the minimum must be of the form:

```r
function(Theta,...)
```

where Theta is a matrix of latent trait values (will be a grid of values if method == 'EAPsum' or method == 'EAP', otherwise Theta will have only 1 row). Additional arguments may included and are caught through the `fscores(...)` input. The function must return a numeric vector of density weights (one for each row in Theta).

custom_theta: a matrix of custom integration nodes to use instead of the default, where each column corresponds to the respective dimension in the model.

min_expected: when computing goodness of fit tests when method = 'EAPsum', this value is used to collapse across the conditioned total scores until the expected values are greater than this value. Note that this only affect the goodness of fit tests and not the returned EAP for sum scores table.

max_theta: the maximum/minimum value any given factor score estimate will achieve using any modal estimator method (e.g., MAP, WLE, ML).

start: a matrix of starting values to use for iterative estimation methods. Default will start at a vector of 0's for each response pattern, or will start at the EAP estimates (unidimensional models only). Must be in the form that matches `full.scores = FALSE` (mostly used in the mirtCAT package).

Details:

The function will return either a table with the computed scores and standard errors, the original data matrix with scores appended to the rightmost column, or the scores only. By default the latent means and covariances are determined from the estimated object, though these can be overwritten. Iterative estimation methods can be estimated in parallel to decrease estimation times if a mirtCluster object is available.

If the input object is a discrete latent class object estimated from mdirt then the returned results will be with respect to the posterior classification for each individual. The method inputs for 'DiscreteClass' objects may only be 'EAP', for posterior classification of each response pattern, or 'EAPsum' for posterior classification based on the raw sum-score. For more information on these algorithms refer to the mirtCAT package and the associated JSS paper (Chalmers, 2016).
Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

averageMI

Examples

```r
mod <- mirt(Science, 1)
tabscores <- fscores(mod, full.scores = FALSE)
head(tabscores)

Not run:
fullscores <- fscores(mod)
fullscores_with_SE <- fscores(mod, full.scores.SE=TRUE)
head(fullscores)
head(fullscores_with_SE)

change method argument to use MAP estimates
fullscores <- fscores(mod, method='MAP')
head(fullscores)

calculate MAP for a given response vector
fscores(mod, method='MAP', response.pattern = c(1,2,3,4))
or matrix
fscores(mod, method='MAP', response.pattern = rbind(c(1,2,3,4), c(2,2,1,3)))

return only the scores and their SEs
fscores(mod, method='MAP', response.pattern = c(1,2,3,4),
append_response.pattern=FALSE)

use custom latent variable properties (diffuse prior for MAP is very close to ML)
fscores(mod, method='MAP', cov = matrix(1000), full.scores = FALSE)
fscores(mod, method='ML', full.scores = FALSE)
```
# EAPsum table of values based on total scores
fscores(mod, method = 'EAPsum', full.scores = FALSE)

#WLE estimation, run in parallel using available cores
mirtCluster()
head(fscores(mod, method='WLE', full.scores = FALSE))

#multiple imputation using 30 draws for EAP scores. Requires information matrix
mod <- mirt(Science, 1, SE=TRUE)
fs <- fscores(mod, MI = 30)
head(fs)

# plausible values for future work
pv <- fscores(mod, plausible.draws = 5)
lapply(pv, function(x) c(mean=mean(x), var=var(x), min=min(x), max=max(x)))

## define a custom_den function. EAP with a uniform prior between -3 and 3
fun <- function(Theta, ...) as.numeric(dunif(Theta, min = -3, max = 3))
head(fscores(mod, custom_den = fun))

## custom MAP prior: standard truncated normal between 5 and -2
library(msm)
# need the :: scope for parallel to see the function (not require if no mirtCluster() defined)
fun <- function(Theta, ...) msm::dtnorm(Theta, mean = 0, sd = 1, lower = -2, upper = 5)
head(fscores(mod, custom_den = fun, method = 'MAP', full.scores = FALSE))

## End(Not run)

---

**gen.difficulty**

**Generalized item difficulty summaries**

### Description
Function provides the four generalized item difficulty representations for polytomous response models described by Ali, Chang, and Anderson (2015). These estimates are used to gauge how difficult a polytomous item may be.

### Usage
```
gen.difficulty(mod, type = "IRF", interval = c(-30, 30), ...)
```

### Arguments
- **mod**: a single factor model estimated by `mirt`
- **type**: type of generalized difficulty parameter to report. Can be 'IRF' to use the item response function (default), 'mean' to find the average of the difficulty estimates, 'median' the median of the difficulty estimates, and 'trimmed' to find the trimmed mean after removing the first and last difficulty estimates.
imputeMissing

Imputing plausible data for missing values

Description

Given an estimated model from any of mirt’s model fitting functions and an estimate of the latent trait, impute plausible missing data values. Returns the original data in a data.frame without any NA values. If a list of Theta values is supplied then a list of complete datasets is returned instead.

Usage

imputeMissing(x, Theta, warn = TRUE, ...)

Examples

## Not run:
mod <- mirt(Science, 1)
coef(mod, simplify=TRUE, IRTpars = TRUE)$items
gen.difficulty(mod)
gen.difficulty(mod, type = 'mean')

# also works for dichotomous items (though this is unnecessary)
dat <- expand.table(LSAT7)
mod <- mirt(dat, 1)
coef(mod, simplify=TRUE, IRTpars = TRUE)$items
gen.difficulty(mod)
gen.difficulty(mod, type = 'mean')

## End(Not run)
Arguments

x an estimated model x from the mirt package
Theta a matrix containing the estimates of the latent trait scores (e.g., via fscores)
warn logical; print warning messages?
... additional arguments to pass

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


Examples

## Not run:
dat <- expand.table(LSAT7)
(original <- mirt(dat, 1))
NAPerson <- sample(1:nrow(dat), 20, replace = TRUE)
NAItem <- sample(1:ncol(dat), 20, replace = TRUE)
for(i in 1:20)
  dat[NAPerson[i], NAItem[i]] <- NA
(mod <- mirt(dat, 1))
scores <- fscores(mod, method = 'MAP')

# re-estimate imputed dataset (good to do this multiple times and average over)
fulldata <- imputeMissing(mod, scores)
(fullmod <- mirt(fulldata, 1))

# with multipleGroup
set.seed(1)
group <- sample(c('group1', 'group2'), 1000, TRUE)
mod2 <- multipleGroup(dat, 1, group, TOL=1e-2)
fs <- fscores(mod2)
fulldata2 <- imputeMissing(mod2, fs)

## End(Not run)

---

itemfit  Item fit statistics
Description
Computes item-fit statistics for a variety of unidimensional and multidimensional models. Poorly fitting items should be inspected with the empirical plots/tables for unidimensional models, otherwise itemGAM can be used to diagnose where the functional form of the IRT model was misspecified, or models can be refit using more flexible semi-parametric response models (e.g., itemtype = 'spline'). If the latent trait density was approximated (e.g., Davidian curves, Empirical histograms, etc) then passing use_dentype_estimate = TRUE will use the internally saved quadrature and density components (where applicable). Currently, only S-X2 statistic supported for mixture IRT models. Finally, where applicable the root mean-square error of approximation (RMSEA) is reported to help gauge the magnitude of item misfit.

Usage

```r
itemfit(
 x,
 fit_stats = "S_X2",
 which.items = 1:extract.mirt(x, "nitems"),
 na.rm = FALSE,
 group.bins = 10,
 group.size = NA,
 group.fun = mean,
 mincell = 1,
 mincell.X2 = 2,
 S_X2.tables = FALSE,
 pv_draws = 30,
 boot = 1000,
 boot_dfapprox = 200,
 ETrange = c(-2, 2),
 ETpoints = 11,
 empirical.plot = NULL,
 empirical.CI = 0.95,
 empirical.table = NULL,
 empirical.poly.collapse = FALSE,
 method = "EAP",
 Theta = NULL,
 par.strip.text = list(cex = 0.7),
 par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")),
 ...
)
```

Arguments

- **x**: a computed model object of class SingleGroupClass, MultipleGroupClass, or DiscreteClass
- **fit_stats**: a character vector indicating which fit statistics should be computed. Supported inputs are:
• 'S_X2': Orlando and Thissen (2000, 2003) and Kang and Chen's (2007) signed chi-squared test (default)
• 'Zh': Drasgow, Levine, & Williams (1985) Zh
• 'X2': Bock's (1972) chi-squared method. The default inputs compute Yen's (1981) Q1 variant of the X2 statistic (i.e., uses a fixed group.bins = 10). However, Bock's group-size variable median-based method can be computed by passing group.fun = median and modifying the group.size input to the desired number of bins
• 'G2': McKinley & Mills (1985) G2 statistic (similar method to Q1, but with the likelihood-ratio test).
• 'PV_Q1': Chalmers and Ng's (2017) plausible-value variant of the Q1 statistic.
• 'PV_Q1*': Chalmers and Ng's (2017) plausible-value variant of the Q1 statistic that uses parametric bootstrapping to obtain a suitable empirical distribution.
• 'X2*': Stone's (2000) fit statistics that require parametric bootstrapping
• 'X2*_df': Stone's (2000) fit statistics that require parametric bootstrapping to obtain scaled versions of the X2* and degrees of freedom
• 'infit': Compute the infit and outfit statistics

Note that 'infit', 'S_X2', and 'Zh' cannot be computed when there are missing response data (i.e., will require multiple-imputation/row-removal techniques).

which.items an integer vector indicating which items to test for fit. Default tests all possible items

na.rm logical; remove rows with any missing values? This is required for methods such as S-X2 because they require the "EAPsum" method from fscores

group.bins the number of bins to use for X2 and G2. For example, setting group.bins = 10 will will compute Yen's (1981) Q1 statistic when 'X2' is requested

group.size approximate size of each group to be used in calculating the \( \chi^2 \) statistic. The default NA disables this command and instead uses the group.bins input to try and construct equally sized bins

group.fun function used when 'X2' or 'G2' are computed. Determines the central tendency measure within each partitioned group. E.g., setting group.fun = median will obtain the median of each respective ability estimate in each subgroup (this is what was used by Bock, 1972)

mincell the minimum expected cell size to be used in the S-X2 computations. Tables will be collapsed across items first if polytomous, and then across scores if necessary

mincell.X2 the minimum expected cell size to be used in the X2 computations. Tables will be collapsed if polytomous, however if this condition can not be met then the group block will be omitted in the computations

S_X2.tables logical; return the tables in a list format used to compute the S-X2 stats?

pv_draws number of plausible-value draws to obtain for PV_Q1 and PV_Q1*

boot number of parametric bootstrap samples to create for PV_Q1* and X2*

boot_dfapprox number of parametric bootstrap samples to create for the X2*_df statistic to approximate the scaling factor for X2* as well as the scaled degrees of freedom estimates
ETrange  rangene of integration nodes for Stone’s X2* statistic
ETPoints  number of integration nodes to use for Stone’s X2* statistic
empirical.plot  a single numeric value or character of the item name indicating which item to
                   plot (via itemplot) and overlay with the empirical \( \theta \) groupings (see empirical.CI). Useful for plotting the expected bins based on the ‘X2’ or ‘G2’ method
empirical.CI  a numeric value indicating the width of the empirical confidence interval ranging
              between 0 and 1 (default of 0 plots not interval). For example, a 95 interval
              would be plotted when empirical.CI = .95. Only applicable to dichotomous
              items
empirical.table  a single numeric value or character of the item name indicating which item table
                  of expected values should be returned. Useful for visualizing the expected bins
                  based on the ‘X2’ or ‘G2’ method
empirical.poly.collapse  logical; collapse polytomous item categories to for expected scoring functions
                          for empirical plots? Default is FALSE
method  type of factor score estimation method. See fscores for more detail
Theta  a matrix of factor scores for each person used for statistics that require empirical
       estimates. If supplied, arguments typically passed to fscores() will be ignored
       and these values will be used instead. Also required when estimating statistics
       with missing data via imputation
par.strip.text  plotting argument passed to lattice
par.settings  plotting argument passed to lattice
...  additional arguments to be passed to fscores() and lattice

Author(s)
Phil Chalmers <rphilip.chalmers@gmail.com>

References
Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two
or more nominal categories. Psychometrika, 37, 29-51.
ronment. Journal of Statistical Software, 48(6), 1-29. doi: 10.18637/jss.v048.i06
Drasgow, F., Levine, M. V., & Williams, E. A. (1985). Appropriateness measurement with poly-
chotomous item response models and standardized indices. British Journal of Mathematical and
Statistical Psychology, 38, 67-86.
item-fit index for polytomous IRT models. ACT
Psychological Measurement, 9, 49-57.


**See Also**

`personfit`, `itemGAM`

**Examples**

```r
Not run:
P <- function(Theta){exp(Theta^2 * 1.2 - 1) / (1 + exp(Theta^2 * 1.2 - 1))}

#make some data
set.seed(1234)
a <- matrix(rlnorm(20, meanlog=0, sdlog = .1),ncol=1)
d <- matrix(rnorm(20),ncol=1)
Theta <- matrix(rnorm(2000))
items <- rep('2PL', 20)
ps <- P(Theta)
baditem <- numeric(2000)
for(i in 1:2000)
 baditem[i] <- sample(c(0,1), 1, prob = c(1-ps[i], ps[i]))
data <- cbind(simdata(a,d, 2000, items, Theta=Theta), baditem=baditem)

x <- mirt(data, 1)
raschfit <- mirt(data, 1, itemtype='Rasch')
fit <- itemfit(x)
fit

itemfit(x)
itemfit(x, 'X2') # just X2
itemfit(x, 'X2', method = 'ML') # X2 with maximum-likelihood estimates for traits
itemfit(x, c('S_X2', 'X2')) #both S_X2 and X2
itemfit(x, group.bins=15, empirical.plot = 1, method = 'ML') #empirical item plot with 15 points
itemfit(x, group.bins=15, empirical.plot = 21, method = 'ML')

PV and X2* statistics (parametric bootstrap stats not run to save time)
itemfit(x, 'PV_Q1')

mirtCluster() # improve speed of bootstrap samples by running in parallel
itemfit(x, 'PV_Q1*')
itemfit(x, 'X2*') # Stone's 1993 statistic
```
# itemfit(x, 'X2*_df') # Stone's 2000 scaled statistic with df estimate

#empirical tables for X2 statistic
itemfit(x, empirical.table=1)
itemfit(x, empirical.table=21)

#infit/outfit statistics. method='ML' agrees better with eRm package
itemfit(raschfit, 'infit', method = 'ML') #infit and outfit stats

#same as above, but inputting ML estimates instead (saves time for re-use)
Theta <- fscores(raschfit, method = 'ML')
itemfit(raschfit, 'infit', Theta=Theta)
itemfit(raschfit, empirical.plot=1, Theta=Theta)
itemfit(raschfit, empirical.table=1, Theta=Theta)

# fit a new more flexible model for the mis-fitting item
itemtype <- c(rep('2PL', 20), 'spline')
x2 <- mirt(data, 1, itemtype=itemtype)
itemfit(x2)
itemplot(x2, 21)
anova(x2, x)

#------------------------------------------------------------

# similar example to Kang and Chen 2007
a <- matrix(c(.8,.4,.7, .8, .4, .7, 1, 1, 1), ncol=3, byrow=TRUE)
d <- matrix(rep(c(2.0,0.0,-1,-1.5),10), ncol=4, byrow=TRUE)
dat <- simdata(a,d,2000, itemtype = rep('graded', 10))
head(dat)

mod <- mirt(dat, 1)
itemfit(mod)
itemfit(mod, 'X2') # pretty much useless given inflated Type I error rates
itemfit(mod, empirical.plot = 1)
itemfit(mod, empirical.plot = 1, empirical.poly.collapse=TRUE)

# collapsed tables (see mincell.X2) for X2 and G2
itemfit(mod, empirical.table = 1)

mod2 <- mirt(dat, 1, 'Rasch')
itemfit(mod2, 'infit', method = 'ML')

# massive list of tables for S-X2
tables <- itemfit(mod, S_X2.tables = TRUE)

# observed and expected total score patterns for item 1 (post collapsing)
tables$O[[1]]
tables$E[[1]]

# fit stats with missing data (run in parallel using all cores)
dat[sample(1:prod(dim(dat)), 100)] <- NA
raschfit <- mirt(dat, 1, itemtype='Rasch')
#use only valid data by removing rows with missing terms
itemfit(raschfit, c('S_X2', 'infit'), na.rm = TRUE)

# note that X2, G2, PV-Q1, and X2* do not require complete datasets
thetas <- fscores(raschfit, method = 'ML') # save scores for faster computations
itemfit(raschfit, c('X2', 'G2'), Theta=thetas)
itemfit(raschfit, empirical.plot=1, Theta=thetas)
itemfit(raschfit, empirical.table=1, Theta=thetas)

## End(Not run)

---

**itemGAM**

**Parametric smoothed regression lines for item response probability functions**

**Description**

This function uses a generalized additive model (GAM) to estimate response curves for items that do not seem to fit well in a given model. Using a stable axillary model, traceline functions for poorly fitting dichotomous or polytomous items can be inspected using point estimates (or plausible values) of the latent trait. Plots of the tracelines and their associated standard errors are available to help interpret the misfit. This function may also be useful when adding new items to an existing, well established set of items, especially when the parametric form of the items under investigation are unknown.

**Usage**

```r
itemGAM(
 item,
 Theta,
 formula = resp ~ s(Theta, k = 10),
 CI = 0.95,
 theta_lim = c(-3, 3),
 return.models = FALSE,
 ...
)
```

## S3 method for class 'itemGAM'

```r
plot(
 x,
 y = NULL,
 par.strip.text = list(cex = 0.7),
 par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")),
 auto.key = list(space = "right", points = FALSE, lines = TRUE),
 ...
)
```
Arguments

item  a single poorly fitting item to be investigated. Can be a vector or matrix
Theta  a list or matrix of latent trait estimates typically returned from fscores
formula  an R formula to be passed to the gam function. Default fits a spline model with 10
          nodes. For multidimensional models, the traits are assigned the names 'Theta1',
          'Theta2', ..., 'ThetaN'
CI  a number ranging from 0 to 1 indicating the confidence interval range. Default
    provides the 95 percent interval
theta_lim  range of latent trait scores to be evaluated
return.models  logical; return a list of GAM models for each category? Useful when the GAMs
               should be inspected directly, but also when fitting multidimensional models (this
               is set to TRUE automatically for multidimensional models)
...  additional arguments to be passed to gam or lattice
x  an object of class 'itemGAM'
y  a NULL value ignored by the plotting function
par.strip.text  plotting argument passed to lattice
par.settings  plotting argument passed to lattice
auto.key  plotting argument passed to lattice

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

roment. Journal of Statistical Software, 48(6), 1-29. doi: 10.18637/jss.v048.i06

See Also

itemfit

Examples

## Not run:
set.seed(10)
N <- 1000
J <- 30

a <- matrix(1, J)
d <- matrix(rnorm(J))
Theta <- matrix(rnorm(N, 0, 1.5))
dat <- simdata(a, d, N, itemtype = '2PL', Theta=Theta)

# make a bad item
ps <- exp(Theta^2 + Theta) / (1 + exp(Theta^2 + Theta))
item1 <- sapply(ps, function(x) sample(c(0,1), size = 1, prob = c(1-x, x)))

ps2 <- exp(2 * Theta^2 + Theta + .5 * Theta^3) / (1 + exp(2 * Theta^2 + Theta + .5 * Theta^3))
item2 <- sapply(ps2, function(x) sample(c(0,1), size = 1, prob = c(1-x, x)))

#' # how the actual item looks in the population
plot(Theta, ps, ylim = c(0,1))
plot(Theta, ps2, ylim = c(0,1))

baditems <- cbind(item1, item2)
newdat <- cbind(dat, baditems)

badmod <- mirt(newdat, 1)
itemfit(badmod) # clearly a bad fit for the last two items
mod <- mirt(dat, 1) # fit a model that does not contain the bad items
itemfit(mod)

#### Pure non-parametric way of investigating the items
library(KernSmoothIRT)
ks <- ksIRT(newdat, rep(1, ncol(newdat)), 1)
plot(ks, item=c(1,31,32))
par(ask=FALSE)

# Using point estimates from the model
Theta <- fscores(mod)
IG0 <- itemGAM(dat[,1], Theta) # good item
IG1 <- itemGAM(baditems[,1], Theta)
IG2 <- itemGAM(baditems[,2], Theta)
plot(IG0)
plot(IG1)
plot(IG2)

# same as above, but with plausible values to obtain the standard errors
set.seed(4321)
ThetaPV <- fscores(mod, plausible.draws=10)
IG0 <- itemGAM(dat[,1], ThetaPV) #good item
IG1 <- itemGAM(baditems[,1], ThetaPV)
IG2 <- itemGAM(baditems[,2], ThetaPV)
plot(IG0)
plot(IG1)
plot(IG2)

## for polytomous test items
SAT12[SAT12 == 8] <- NA
dat <- key2binary(SAT12,
   key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
dat <- dat[,,-32]
mod <- mirt(dat, 1)

# Kernal smoothing is very sensitive to which category is selected as 'correct'
# 5th category as correct
ks <- ksIRT(cbind(dat, SAT12[,32]), c(rep(1, 31), 5), 1)
iteminfo

Function to calculate item information

Description

Given an internal mirt item object extracted by using extract.item, compute the item information.

Usage

iteminfo(x, Theta, degrees = NULL, total.info = TRUE, multidim_matrix = FALSE)

Arguments

x an extracted internal mirt object containing item information (see extract.item)
Theta a vector (unidimensional) or matrix (multidimensional) of latent trait values
iteminfo

degrees a vector of angles in degrees that are between 0 and 90. Only applicable when the input object is multidimensional

total.info logical; return the total information curve for the item? If FALSE, information curves for each category are returned as a matrix

multidim_matrix logical; compute the information matrix for each row in Theta? If Theta contains more than 1 row then a list of matrices will be returned, otherwise if Theta has exactly one row then a matrix will be returned

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

extract.item

Examples

mod <- mirt(Science, 1)
extr.2 <- extract.item(mod, 2)
Theta <- matrix(seq(-4,4, by = .1))
info.2 <- iteminfo(extr.2, Theta)

#do something with the info?
plot(Theta, info.2, type = 'l', main = 'Item information')

## Not run:
#category information curves
cat.info <- iteminfo(extr.2, Theta, total.info = FALSE)
plot(Theta, cat.info[,1], type = 'l', ylim = c(0, max(cat.info)),
     ylab = 'info', main = 'Category information')
for(i in 2:ncol(cat.info))
    lines(Theta, cat.info[,i], col = i)

## Customized test information plot
T1 <- T2 <- 0
dat <- expand.table(LSAT7)
mod1 <- mirt(dat, 1)
mod2 <- mirt(dat, 1, 'Rasch')
for(i in 1:5){
    T1 <- T1 + iteminfo(extract.item(mod1, i), Theta)
    T2 <- T2 + iteminfo(extract.item(mod2, i), Theta)
}
itemplot Displays item surface and information plots

Description

itemplot displays various item based IRT plots, with special options for plotting items that contain several 0 slope parameters. Supports up to three dimensional models.

Usage

itemplot(
  object,  
  item,    
  type = "trace",  
  degrees = 45,  
  CE = FALSE,  
  CEalpha = 0.05,  
  CEdraws = 1000,  
  drop.zeros = FALSE,  
  theta_lim = c(-6, 6),  
  shiny = FALSE,  
  rot = list(xaxis = -70, yaxis = 30, zaxis = 10),  
  par.strip.text = list(cex = 0.7),  
  npts = 200,  
  par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")),  
  auto.key = list(space = "right", points = FALSE, lines = TRUE),  
  ...
)
Arguments

object: a computed model object of class SingleGroupClass or MultipleGroupClass. Input may also be a list for comparing similar item types (e.g., 1PL vs 2PL).

item: a single numeric value, or the item name, indicating which item to plot.

type: plot type to use, information ('info'), standard errors ('SE'), item trace lines ('trace'), information and standard errors ('infoSE') or information and trace lines ('infotrace'), relative efficiency lines ('RE'), expected score 'score', or information and trace line contours ('infocontour' and 'tracecontour'; not supported for MultipleGroupClass objects).

degrees: the degrees argument to be used if there are two or three factors. See iteminfo for more detail. A new vector will be required for three dimensional models to override the default.

CE: logical; plot confidence envelope?

CEalpha: area remaining in the tail for confidence envelope. Default gives 95% confidence region.

CEdraws: draws number of draws to use for confidence envelope.

drop.zeros: logical; drop slope values that are numerically close to zero to reduce dimensionality? Useful in objects returned from bfactor or other confirmatory models that contain several zero slopes.

theta_lim: lower and upper limits of the latent trait (theta) to be evaluated, and is used in conjunction with npts.

shiny: logical; run interactive display for item plots using the shiny interface. This primarily is an instructive tool for demonstrating how item response curves behave when adjusting their parameters.

rot: a list of rotation coordinates to be used for 3 dimensional plots.

par.strip.text: plotting argument passed to lattice.

npts: number of quadrature points to be used for plotting features. Larger values make plots look smoother.

par.settings: plotting argument passed to lattice.

auto.key: plotting argument passed to lattice.

...: additional arguments to be passed to lattice and coef().

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

## Not run:

```r
data(LSAT7)
fulldata <- expand.table(LSAT7)
mod1 <- mirt(fulldata, 1, SE=TRUE)
mod2 <- mirt(fulldata, 1, itemtype = 'Rasch')
mod3 <- mirt(fulldata, 2)

itemplot(mod1, 2)
itemplot(mod1, 2, CE = TRUE)
itemplot(mod1, 2, type = 'info')
itemplot(mod1, 2, type = 'info', CE = TRUE)

mods <- list(twoPL = mod1, onePL = mod2)
itemplot(mods, 1, type = 'RE')

multidimensional
itemplot(mod3, 4, type = 'info')
itemplot(mod3, 4, type = 'infocontour')
itemplot(mod3, 4, type = 'tracecontour')

polytomous items
pmod <- mirt(Science, 1, SE=TRUE)
itemplot(pmod, 3)
itemplot(pmod, 3, CE = TRUE)
itemplot(pmod, 3, type = 'score')
itemplot(pmod, 3, type = 'infotrace')

use the directlabels package to put labels on tracelines
library(directlabels)
plt <- itemplot(pmod, 3)
direct.label(plt, 'top.points')

change colour theme of plots
bwtheme <- standard.theme("pdf", color=FALSE)
plot(pmod, type='trace', par.settings=bwtheme)
itemplot(pmod, 1, type = 'trace', par.settings=bwtheme)

infoSE plot
itemplot(pmod, 1, type = 'infoSE')

uncomment to run interactive shiny applet
itemplot(shiny = TRUE)

End(Not run)
```
**key2binary**

**Description**

The key2binary function will convert response pattern data to a dichotomous format, given a response key.

**Usage**

```r
key2binary(fulldata, key, score_missing = FALSE)
```

**Arguments**

- **fulldata**: an object of class `data.frame`, `matrix`, or `table` with the response patterns
- **key**: a vector or matrix consisting of the 'correct' response to the items. Each value/row corresponds to each column in `fulldata`. If the input is a matrix, multiple scoring keys can be supplied for each item. NA values are used to indicate no scoring key (or in the case of a matrix input, no additional scoring keys)
- **score_missing**: logical; should missing data elements be returned as incorrect (i.e., 0)? If `FALSE`, all missing data terms will be kept as missing

**Value**

Returns a numeric matrix with all the response patterns in dichotomous format

**Author(s)**

Phil Chalmers <rphilip.chalmers@gmail.com>

**References**


**Examples**

```r
data(SAT12)
head(SAT12)
key <- c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)
dicho.SAT12 <- key2binary(SAT12, key)
head(dicho.SAT12)

multiple scoring keys
key2 <- cbind(c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5),
 c(2,3,NA,1,rep(NA, 28)))
dicho.SAT12 <- key2binary(SAT12, key2)

keys from raw character responses
resp <- as.data.frame(matrix(c(
 "B","B","D","D","E",
 "B","A","D","D","E",
 "B","A"


```
lagrange

Lagrange test for freeing parameters

Description

Lagrange (i.e., score) test to test whether parameters should be freed from a more constrained baseline model.

Usage

lagrange(mod, parnum, SE.type = "Oakes", type = "Richardson", ...)

Arguments

mod an estimated model
parnum a vector, or list of vectors, containing one or more parameter locations/sets of locations to be tested. See objects returned from mod2values for the locations
SE.type type of information matrix estimator to use. See mirt for further details
type type of numerical algorithm passed to numerical_deriv to obtain the gradient terms
...

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

```
likert2int

See Also

wald

Examples

Not run:
dat <- expand.table(LSAT7)
mod <- mirt(dat, 1, 'Rasch')
(values <- mod2values(mod))

test all fixed slopes individually
parnum <- values$parnum[values$name == 'a1']
lagrange(mod, parnum)

compare to LR test for first two slopes
mod2 <- mirt(dat, 'F = 1-5
 FREE = (1, a1)', 'Rasch')
coef(mod2, simplify=TRUE)$items
anova(mod, mod2)

mod2 <- mirt(dat, 'F = 1-5
 FREE = (2, a1)', 'Rasch')
coef(mod2, simplify=TRUE)$items
anova(mod, mod2)

mod2 <- mirt(dat, 'F = 1-5
 FREE = (3, a1)', 'Rasch')
coef(mod2, simplify=TRUE)$items
anova(mod, mod2)

test slopes first two slopes and last three slopes jointly
lagrange(mod, list(parnum[1:2], parnum[3:5]))

test all 5 slopes and first + last jointly
lagrange(mod, list(parnum[1:5], parnum[c(1, 5)]))

End(Not run)

likert2int

Convert ordered Likert-scale responses (character or factors) to integers

Description

Given a matrix or data.frame object consisting of Likert responses return an object of the same dimensions with integer values.
Usage

likert2int(x, levels = NULL)

Arguments

x
a matrix of character values or data.frame of character/factor vectors

levels
a named character vector indicating which integer values should be assigned to which elements. If omitted, the order of the elements will be determined after converting each column in x to a factor variable

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

See Also

key2binary, poly2dich

Examples

Not run:

simulate data

dat1 <- matrix(sample(c('Disagree', 'Strongly Disagree', 'Agree', 'Neutral', 'Strongly Agree'), 1000*5, replace=TRUE), nrow=1000, ncol=5)
dat2 <- matrix(sample(c('D', 'SD', 'A', 'N', 'SA'), 1000*5, replace=TRUE), nrow=1000, ncol=5)
dat <- cbind(dat1, dat2)

separately
intdat1 <- likert2int(dat1)
head(dat1)
head(intdat1)

more useful with explicit levels
lvl1 <- c('Strongly Disagree'=1, 'Disagree'=2, 'Neutral'=3, 'Agree'=4, 'Strongly Agree'=5)
intdat1 <- likert2int(dat1, levels = lvl1)
head(dat1)
head(intdat1)

second data
lvl2 <- c('SD'=1, 'D'=2, 'N'=3, 'A'=4, 'SA'=5)
intdat2 <- likert2int(dat2, levels = lvl2)
head(dat2)
head(intdat2)

full dataset (using both mapping schemes)
intdat <- likert2int(dat, levels = c(lvl1, lvl2))
head(dat)
head(intdat)

#####
data.frame as input with ordered factors

dat1 <- data.frame(dat1)
dat2 <- data.frame(dat2)
dat.old <- cbind(dat1, dat2)
colnames(dat.old) <- paste0('Item_', 1:10)
str(dat.old) # factors are leveled alphabetically by default

create explicit ordering in factor variables
for(i in 1:ncol(dat1))
 levels(dat1[[i]]) <- c('Strongly Disagree', 'Disagree', 'Neutral', 'Agree', 'Strongly Agree')

for(i in 1:ncol(dat2))
 levels(dat2[[i]]) <- c('SD', 'D', 'N', 'A', 'SA')

dat <- cbind(dat1, dat2)
colnames(dat) <- colnames(dat.old)
str(dat) # note ordering

intdat <- likert2int(dat)
head(dat)
head(intdat)

End(Not run)

logLik-method

Extract log-likelihood

Description

Extract the observed-data log-likelihood.

Usage

S4 method for signature 'SingleGroupClass'
logLik(object)
Arguments

object an object of class `SingleGroupClass`, `MultipleGroupClass`, or `MixedClass`

References

Examples

```r
## Not run:
x <- mirt(Science, 1)
logLik(x)

## End(Not run)
```

LSAT6 Description of LSAT6 data

Description

Data from Thissen (1982); contains 5 dichotomously scored items obtained from the Law School Admissions Test, section 6.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

```r
## Not run:
dat <- expand.table(LSAT6)
head(dat)
model <- 'F = 1-5
        CONSTRAINT = (1-5, a1)'
(mod <- mirt(dat, model))
M2(mod)
itemfit(mod)
```
coef(mod, simplify=TRUE)

equivalently, but with a different parameterization
mod2 <- mirt(dat, 1, itemtype = 'Rasch')
anova(mod, mod2) # equal
M2(mod2)
itemfit(mod2)
coef(mod2, simplify=TRUE)
sqrt(coef(mod2)$GroupPars[2]) # latent SD equal to the slope in mod

End(Not run)

LSAT7

Description of LSAT7 data

Description

Data from Bock & Lieberman (1970); contains 5 dichotomously scored items obtained from the Law School Admissions Test, section 7.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

```r
## Not run:
dat <- expand.table(LSAT7)
head(dat)
(mod <- mirt(dat, 1))
coef(mod)

## End(Not run)
```
M2

Compute the M2 model fit statistic

Description

Computes the M2 (Maydeu-Olivares & Joe, 2006) statistic when all data are dichotomous, the collapsed M2* statistic (collapsing over univariate and bivariate response categories; see Cai and Hansen, 2013), and the hybrid C2 statistic which only collapses only the bivariate moments (Cai and Monro, 2014). The C2 variant is mainly useful when polytomous response models do not have sufficient degrees of freedom to compute M2*. This function also computes associated fit indices that are based on fitting the null model. Supports single and multiple-group models. If the latent trait density was approximated (e.g., Davidian curves, Empirical histograms, etc) then passing use_dentype_estimate = TRUE will use the internally saved quadrature and density components (where applicable).

Usage

```r
M2(
  obj,
  type = "M2*",
  calcNull = TRUE,
  na.rm = FALSE,
  quadpts = NULL,
  theta_lim = c(-6, 6),
  CI = 0.9,
  residmat = FALSE,
  QMC = FALSE,
  suppress = 1,
  ...
)
```

Arguments

- `obj`: an estimated model object from the mirt package
- `type`: type of fit statistic to compute. Options are "M2", "M2*" for the univariate and bivariate collapsed version of the M2 statistic ("M2" currently limited to dichotomous response data only), and "C2" for a hybrid between M2 and M2* where only the bivariate moments are collapsed
- `calcNull`: logical; calculate statistics for the null model as well? Allows for statistics such as the limited information TLI and CFI. Only valid when items all have a suitable null model (e.g., those created via `createItem` will not)
- `na.rm`: logical; remove rows with any missing values? The M2 family of statistics requires a complete dataset in order to be well defined
- `quadpts`: number of quadrature points to use during estimation. If NULL, a suitable value will be chosen based on the rubric found in `fscores`
theta_lim lower and upper range to evaluate latent trait integral for each dimension
CI numeric value from 0 to 1 indicating the range of the confidence interval for RMSEA. Default returns the 90% interval
residmat logical; return the residual matrix used to compute the SRMSR statistic? Only the lower triangle of the residual correlation matrix will be returned (the upper triangle is filled with NA's)
QMC logical; use quasi-Monte Carlo integration? Useful for higher dimensional models. If quadpts not specified, 5000 nodes are used by default
suppress a numeric value indicating which parameter residual dependency combinations to flag as being too high. Absolute values for the standardized residuals greater than this value will be returned, while all values less than this value will be set to NA. Must be used in conjunction with the argument residmat = TRUE

Value

Returns a data.frame object with the M2-type statistic, along with the degrees of freedom, p-value, RMSEA (with 90% confidence interval), SRMSR for each group (if all items were ordinal), and optionally the TLI and CFI model fit statistics if calcNull = TRUE.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

```r
## Not run:
dat <- as.matrix(expand.table(LSAT7))
(mod1 <- mirt(dat, 1))
M2(mod1)
M2(mod1, residmat=TRUE) #lower triangle of residual correlation matrix

#M2 with missing data present
dat[sample(1:prod(dim(dat)), 250)] <- NA
mod2 <- mirt(dat, 1)
# Compute stats by removing missing data row-wise
M2(mod2, na.rm = TRUE)
```
C2 statistic (useful when polytomous IRT models have too few df)
pmod <- mirt(Science, 1)
This fails with too few df:
M2(pmod)
This, however, works:
M2(pmod, type = 'C2')

End(Not run)

marginal_rxx

Function to calculate the marginal reliability

Description

Given an estimated model and a prior density function, compute the marginal reliability (Thissen and Wainer, 2001). This is only available for unidimensional tests.

Usage

```
marginal_rxx(mod, density = dnorm, ...)
```

Arguments

- `mod`: an object of class `SingleGroupClass`
- `density`: a density function to use for integration. Default assumes the latent traits are from a normal (Gaussian) distribution
- `...`: additional arguments passed to the density function

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

See Also

`empirical_rxx, extract.group, testinfo`
Examples

```r
dat <- expand.table(deAyala)
mod <- mirt(dat, 1)

# marginal estimate
marginal_rxx(mod)

## Not run:
# empirical estimate (assuming the same prior)
fscores(mod, returnER = TRUE)

# empirical rxx the alternative way, given theta scores and SEs
fs <- fscores(mod, full.scores.SE=TRUE)
head(fs)
empirical_rxx(fs)

## End(Not run)
```

MDIFF

Compute multidimensional difficulty index

Description

Returns a matrix containing the MDIFF values (Reckase, 2009). Only supported for items of class 'dich' and 'graded'.

Usage

```r
MDIFF(x, which.items = NULL, group = NULL)
```

Arguments

- `x`: an object of class 'SingleGroupClass', or an object of class 'MultipleGroupClass' if a suitable group input were supplied
- `which.items`: a vector indicating which items to select. If NULL is used (the default) then MDISC will be computed for all items
- `group`: group argument to pass to `extract.group` function. Required when the input object is a multiple-group model

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>
References

See Also

`extract.group`, `MDISC`

Examples

```r
## Not run:

mod <- mirt(Science, 2)
MDIFF(mod)

mod <- mirt(expand.table(LSAT7), 2)
MDIFF(mod)

## End(Not run)
```

mdirt

Multidimensional discrete item response theory

Description

mdirt fits a variety of item response models with discrete latent variables. These include, but are not limited to, latent class analysis, multidimensional latent class models, multidimensional discrete latent class models, DINA/DINO models, grade of measurement models, C-RUM, and so on. If response models are not defined explicitly then customized models can defined using the `createItem` function.

Usage

```r
mdirt(
  data,
  model,
  customTheta = NULL,
  structure = NULL,
  item.Q = NULL,
  nruns = 1,
  method = "EM",
  covdata = NULL,
  formula = NULL,
  itemtype = "lca",
  optimizer = "nlminb",
```
mdirt

return.max = TRUE,
group = NULL,
GenRandomPars = FALSE,
verbose = TRUE,
pars = NULL,
technical = list(),
...
)

Arguments

data a matrix or data.frame that consists of numerically ordered data, with missing data coded as NA

model number of mutually exclusive classes to fit, or alternatively a more specific mirt.model definition (which reflects the so-called Q-matrix). Note that when using a mirt.model, the order with which the syntax factors/attributes are defined are associated with the columns in the customTheta input

customTheta input passed to technical = list(customTheta = ...), but is included directly in this function for convenience. This input is most interesting for discrete latent models because it allows customized patterns of latent classes (i.e., defines the possible combinations of the latent attribute profile). The default builds the pattern customTheta = diag(model), which is the typical pattern for the traditional latent class analysis whereby class membership mutually distinct and exhaustive. See thetaComb for a quick method to generate a matrix with all possible combinations

structure an R formula allowing the profile probability patterns (i.e., the structural component of the model) to be fitted according to a log-linear model. When NULL, all profile probabilities (except one) will be estimated. Use of this input requires that the customTheta input is supplied, and that the column names in this matrix match the names found within this formula

item.Q a list of item-level Q-matrices indicating how the respective categories should be modeled by the underlying attributes. Each matrix must represent a $K_i \times A$ matrix, where K_i represents the number of categories for the ith item, and A is the number of attributes included in the Theta matrix; otherwise, a value of NULL will default to a matrix consisting of 1’s for each $K_i \times A$ element except for the first row, which contains only 0’s for proper identification. Incidentally, the first row of each matrix must contain only 0’s so that the first category represents the reference category for identification

nruns a numeric value indicating how many times the model should be fit to the data when using random starting values. If greater than 1, GenRandomPars is set to true by default

method estimation method. Can be 'EM' or 'BL' (see mirt for more details)
covdata a data.frame of data used for latent regression models

formula an R formula (or list of formulas) indicating how the latent traits can be regressed using external covariates in covdata. If a named list of formulas is supplied (where the names correspond to the latent trait/attribute names in model) then
specific regression effects can be estimated for each factor. Supplying a single
formula will estimate the regression parameters for all latent variables by default.

itemtype

a vector indicating the itemtype associated with each item. For discrete models
this is limited to only 'lca' or items defined using a createItem definition.

optimizer

optimizer used for the M-step, set to 'nlminb' by default. See mirt for more
details.

return_max

logical: when nruns > 1, return the model that has the most optimal maximum
likelihood criteria? If FALSE, returns a list of all the estimated objects.

group

a factor variable indicating group membership used for multiple group analyses.

GenRandomPars

logical; use random starting values.

verbose

logical; turn on messages to the R console.

pars

used for modifying starting values; see mirt for details.

technical

list of lower-level inputs. See mirt for details.

... additional arguments to be passed to the estimation engine. See mirt for more
details and examples.

Details

Posterior classification accuracy for each response pattern may be obtained via the fscores
function. The summary() function will display the category probability values given the class membership,
which can also be displayed graphically with plot(), while coef() displays the raw coefficient
values (and their standard errors, if estimated). Finally, anova() is used to compare nested
models, while M2 and itemfit may be used for model fitting purposes.

'lca' model definition

The latent class IRT model with two latent classes has the form

\[P(x = k|\theta_1, \theta_2, a1, a2) = \frac{\exp(a1\theta_1 + a2\theta_2)}{\sum_{j} \exp(a1\theta_{1j} + a2\theta_{2j})} \]

where the \(\theta \) values generally take on discrete points (such as 0 or 1). For proper identification, the
first category slope parameters (a1 and a2) are never freely estimated. Alternatively, supplying a
different grid of \(\theta \) values will allow the estimation of similar models (multidimensional discrete
models, grade of membership, etc.). See the examples below.

When the item.Q for is utilized, the above equation can be understood as

\[P(x = k|\theta_1, \theta_2, a1, a2) = \frac{\exp(a1\theta_{1j}Q_{j1} + a2\theta_{2j}Q_{j2})}{\sum_{j} \exp(a1\theta_{1j}Q_{j1} + a2\theta_{2j}Q_{j2})} \]

where by construction Q is a \(K_i \times A \) matrix indicating whether the category should be modeled
according to the latent class structure. For the standard latent class model, the Q-matrix has as
many rows as categories, as many columns as the number of classes/attributes modeled, and consist
of 0's in the first row and 1's elsewhere. This of course can be over-written by passing an alternative
item.Q definition for each respective item.
mdirt

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

See Also

thetaComb, fscores, mirt.model, M2, itemfit, boot.mirt, mirtCluster, wald, coef-method, summary-method, anova-method, residuals-method

Examples

#LSAT6 dataset
dat <- expand.table(LSAT6)

fit with 2-3 latent classes
(mod2 <- mdirt(dat, 2))
Not run:
(mod3 <- mdirt(dat, 3))
summary(mod2)
residuals(mod2)
residuals(mod2, type = 'exp')
anova(mod2, mod3)
M2(mod2)
itemfit(mod2)

generate classification plots
plot(mod2)
plot(mod2, facet_items = FALSE)
plot(mod2, profile = TRUE)

available for polytomous data
mod <- mdirt(Science, 2)
summary(mod)
plot(mod)
plot(mod, profile = TRUE)

classification based on response patterns
fscores(mod2, full.scores = FALSE)

classify individuals either with the largest posterior probability.....
fs <- fscores(mod2)
head(fs)
classes <- 1:2
class_max <- classes[apply(apply(fs, 1, max) == fs, 1, which)]
... or by probability sampling (i.e., plausible value draws)
class_prob <- apply(fs, 1, function(x) sample(1:2, 1, prob=x))
table(class_prob)

plausible value imputations for stochastic classification in both classes
pvs <- fscores(mod2, plausible.draws=10)
tabs <- lapply(pvs, function(x) apply(x, 2, table))
tabs[[1]]

fit with random starting points (run in parallel to save time)
mirtCluster()
mod <- mdirt(dat, 2, nruns=10)

#--------------------------
Grade of measurement model
define a custom Theta grid for including a 'fuzzy' class membership
(Theta <- matrix(c(1, 0, .5, .5, 0, 1), nrow=3 , ncol=2, byrow=TRUE))
(mod_gom <- mdirt(dat, 2, customTheta = Theta))
summary(mod_gom)

#-----------------
Multidimensional discrete latent class model

dat <- key2binary(SAT12,
 key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))

define Theta grid for three latent classes
(Theta <- thetaComb(0:1, 3))
(mod_discrete <- mdirt(dat, 3, customTheta = Theta))
summary(mod_discrete)

Located latent class model
model <- mirt.model("C1 = 1-32
 C2 = 1-32
 C3 = 1-32
 CONSTRAIN = (1-32, a1), (1-32, a2), (1-32, a3)"
 (mod_located <- mdirt(dat, model, customTheta = diag(3)))
summary(mod_located)

#-----------------
DINA model example
generate some suitable data for a two dimensional DINA application
(first columns are intercepts)
set.seed(1)
Theta <- expand.table(matrix(c(1,0,0,0,
 1,1,0,0,
 1,0,1,0,
 1,1,1,4,4, byrow=TRUE),
 freq = c(200,200,100,500))
a <- matrix(c(rnorm(15, -1.5, .5), rlnorm(5, .2, .3), numeric(15), rlnorm(5, .2, .3),
numeric(15), rlnorm(5, .2, .3)), 15, 4)

guess <- plogis(a[11:15,1]) # population guess
slip <- 1 - plogis(rowSums(a[11:15,])) # population slip

dat <- simdata(a, Theta=Theta, itemtype = 'lca')

first column is the intercept, 2nd and 3rd are attributes
theta <- cbind(1, thetaComb(0:1, 2))
theta <- cbind(theta, theta[,2] * theta[,3]) #DINA interaction of main attributes
model <- mirt.model('Intercept = 1-15
A1 = 1-5
A2 = 6-10
A1A2 = 11-15')

last 5 items are DINA (first 10 are unidimensional C-RUMs)
DINA <- mdirt(dat, model, customTheta = theta)
coef(DINA, simplify=TRUE)
summary(DINA)
M2(DINA) # fits well (as it should)

cfs <- coef(DINA, simplify=TRUE)$items[11:15,]
cbind(guess, estguess = plogis(cfs[,1]))
cbind(slip, estslip = 1 - plogis(rowSums(cfs)))

DINO model example
theta <- cbind(1, thetaComb(0:1, 2))
define theta matrix with negative interaction term
(theta <- cbind(theta, -theta[,2] * theta[,3]))

model <- mirt.model('Intercept = 1-15
A1 = 1-5, 11-15
A2 = 6-15
Yoshi = 11-15
CONSTRAIN = (11,a2,a3,a4), (12,a2,a3,a4), (13,a2,a3,a4), (14,a2,a3,a4), (15,a2,a3,a4)')

last five items are DINOs (first 10 are unidimensional C-RUMs)
DINO <- mdirt(dat, model, customTheta = theta)
coef(DINO, simplify=TRUE)
summary(DINO)
M2(DINO) # doesn't fit as well, because not the generating model

C-RUM (analogous to MIRT model)
theta <- cbind(1, thetaComb(0:1, 2))
model <- mirt.model('Intercept = 1-15
A1 = 1-5, 11-15
A2 = 6-15')

CRUM <- mdirt(dat, model, customTheta = theta)
coef(CRUM, simplify=TRUE)
summary(CRUM)

good fit, but over-saturated (main effects for items 11-15 can be set to 0)
M2(CRUM)

#------------------
multidimensional latent class model

dat <- key2binary(SAT12,
 key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))

5 latent classes within 2 different sets of items
model <- mirt.model('C1 = 1-16
 C2 = 1-16
 C3 = 1-16
 C4 = 1-16
 C5 = 1-16
 C6 = 17-32
 C7 = 17-32
 C8 = 17-32
 C9 = 17-32
 C10 = 17-32

 CONSTRAIN = (1-16, a1), (1-16, a2), (1-16, a3), (1-16, a4), (1-16, a5),
 (17-32, a6), (17-32, a7), (17-32, a8), (17-32, a9), (17-32, a10)')

theta <- diag(10) # defined explicitly. Otherwise, this profile is assumed
mod <- mdirt(dat, model, customTheta = theta)
coef(mod, simplify=TRUE)
summary(mod)

#------------------
multiple group with constrained group probabilities

dat <- key2binary(SAT12,
 key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))

group <- rep(c('G1', 'G2'), each = nrow(SAT12)/2)
Theta <- diag(2)

the latent class parameters are technically located in the (nitems + 1) location
model <- mirt.model('A1 = 1-32
 A2 = 1-32

 CONSTRAINB = (33, c1)')
mod <- mdirt(dat, model, group = group, customTheta = Theta)
coef(mod, simplify=TRUE)
summary(mod)

#------------------
Probabilistic Guttman Model (Proctor, 1970)

example analysis can also be found in the sirt package (see ?prob.guttman)
data(data.read, package = 'sirt')
head(data.read)
Theta <- matrix(c(1,0,0,0,
1,1,0,0,
1,1,1,0,
1,1,1,1), 4, byrow=TRUE)

model <- mirt.model("INTERCEPT = 1-12
C1 = 1,7,9,11
C2 = 2,5,8,10,12
C3 = 3,4,6")

mod <- mdirt(data.read, model, customTheta=Theta)
summary(mod)

M2(mod)
itemfit(mod)

End(Not run)

MDISC

Compute multidimensional discrimination index

Description

Returns a vector containing the MDISC values for each item in the model input object (Reckase, 2009).

Usage

`MDISC(x, group = NULL)`

Arguments

- `x` an object of class 'SingleGroupClass', or an object of class 'MultipleGroupClass' if a suitable group input were supplied
- `group` group argument to pass to `extract.group` function. Required when the input object is a multiple-group model

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

mirt

Full-Information Item Factor Analysis (Multidimensional Item Response Theory)

Description

mirt fits a maximum likelihood (or maximum a posteriori) factor analysis model to any mixture of dichotomous and polytomous data under the item response theory paradigm using either Cai’s (2010) Metropolis-Hastings Robbins-Monro (MHRM) algorithm, with an EM algorithm approach outlined by Bock and Aiken (1981) using rectangular or quasi-Monte Carlo integration grids, or with the stochastic EM (i.e., the first two stages of the MH-RM algorithm). Models containing ‘explanatory’ person or item level predictors can only be included by using the mixedmirt function, though latent regression models can be fit using the formula input in this function. Tests that form a two-tier or bi-factor structure should be estimated with the bfactor function, which uses a dimension reduction EM algorithm for modeling item parcels. Multiple group analyses (useful for DIF and DTF testing) are also available using the multipleGroup function.

Usage

mirt(
 data,
 model,
 itemtype = NULL,
 guess = 0,
 upper = 1,
 SE = FALSE,
 covdata = NULL,
 formula = NULL,
 SE.type = "Oakes",
 method = "EM",
 optimizer = NULL,
 dentype = "Gaussian",
 pars = NULL,
 constrain = NULL,
)
parprior = NULL,
calcNull = FALSE,
draws = 5000,
survey.weights = NULL,
quadpts = NULL,
TOL = NULL,
gpcm_mats = list(),
grsm.block = NULL,
rsr.block = NULL,
monopoly.k = 1L,
key = NULL,
large = FALSE,
GenRandomPars = FALSE,
accelerate = "Ramsay",
verbose = TRUE,
solnp.args = list(),
nloptr.args = list(),
spline.args = list(),
control = list(),
technical = list(),
...

Arguments

data a matrix or data.frame that consists of numerically ordered data, with missing
data coded as NA (to convert from an ordered factor data.frame see data.matrix)

model a string to be passed (or an object returned from) mirt.model, declaring how the
IRT model is to be estimated (loadings, constraints, priors, etc). For exploratory
IRT models, a single numeric value indicating the number of factors to extract
is also supported

itemtype type of items to be modeled, declared as a vector for each item or a single value
which will be recycled for each item. The NULL default assumes that the items
follow a graded or 2PL structure, however they may be changed to the following:

- 'Rasch' - Rasch/partial credit model by constraining slopes to 1 and freely
 estimating the variance parameters (alternatively, can be specified by applying
equality constraints to the slope parameters in 'gpcm'; Rasch, 1960)
- '2PL', '3PL', '3PLu', and '4PL' - 2-4 parameter logistic model, where
 3PL estimates the lower asymptote only while 3PLu estimates the upper
 asymptote only (Lord and Novick, 1968; Lord, 1980)
- 'graded' - graded response model (Samejima, 1969)
- 'grsm' and 'grsmIRT' - graded ratings scale model in the slope-intercept
 and classical IRT parameterization. 'grsmIRT' is restricted to unidimen-
sional models (Muraki, 1992)
- 'gpcm' and 'gpcmIRT' - generalized partial credit model in the slope-
 intercept and classical parameterization. 'gpcmIRT' is restricted to uni-
dimensional models. Note that optional scoring matrices for 'gpcm' are
available with the gpcm_mats input (Muraki, 1992)
• 'rsm' - Rasch rating scale model using the 'gpcmIRT' structure (unidimensional only; Andrich, 1978)
• 'nominal' - nominal response model (Bock, 1972)
• 'ideal' - dichotomous ideal point model (Maydeu-Olivares, 2006)
• 'ggum' - generalized graded unfolding model (Roberts, Donoghue, & Laughlin, 2000) and its multidimensional extension
• 'sequential' - multidimensional sequential response model (Tutz, 1990) in slope-intercept form
• 'Tutz' - same as the 'sequential' itemtype, except the slopes are fixed to 1 and the latent variance terms are freely estimated (similar to the 'Rasch' itemtype input)
• 'PC2PL' and 'PC3PL' - 2-3 parameter partially compensatory model. Note that constraining the slopes to be equal across items will reduce the model to Embretson's (a.k.a. Whitely's) multicomponent model (1980).
• '2PLNRM', '3PLNRM', '3PLuNRM', and '4PLNRM' - 2-4 parameter nested logistic model, where 3PLNRM estimates the lower asymptote only while 3PLuNRM estimates the upper asymptote only (Suh and Bolt, 2010)
• 'spline' - spline response model with the bs (default) or the ns function (Winsberg, Thissen, and Wainer, 1984)
• 'monopoly' - monotonic polynomial model for unidimensional tests for dichotomous and polytomous response data (Falk and Cai, 2016)

Additionally, user defined item classes can also be defined using the createItem function

- **guess**
 - fixed pseudo-guessing parameters. Can be entered as a single value to assign a global guessing parameter or may be entered as a numeric vector corresponding to each item

- **upper**
 - fixed upper bound parameters for 4-PL model. Can be entered as a single value to assign a global guessing parameter or may be entered as a numeric vector corresponding to each item

- **SE**
 - logical; estimate the standard errors by computing the parameter information matrix? See SE.type for the type of estimates available

- **covdata**
 - a data.frame of data used for latent regression models

- **formula**
 - an R formula (or list of formulas) indicating how the latent traits can be regressed using external covariates in covdata. If a named list of formulas is supplied (where the names correspond to the latent trait names in model) then specific regression effects can be estimated for each factor. Supplying a single formula will estimate the regression parameters for all latent traits by default

- **SE.type**
 - type of estimation method to use for calculating the parameter information matrix for computing standard errors and wald tests. Can be:
 - 'Richardson', 'forward', or 'central' for the numerical Richardson, forward difference, and central difference evaluation of observed Hessian matrix
 - 'crossprod' and 'Louis' for standard error computations based on the variance of the Fisher scores as well as Louis' (1982) exact computation of the observed information matrix. Note that Louis' estimates can take a long time to obtain for large sample sizes and long tests
- 'sandwich' for the sandwich covariance estimate based on the 'crossprod' and 'Oakes' estimates (see Chalmers, 2018, for details)
- 'sandwich.Louis' for the sandwich covariance estimate based on the 'crossprod' and 'Louis' estimates
- 'Oakes' for Oakes' (1999) method using a central difference approximation (see Chalmers, 2018, for details)
- 'SEM' for the supplemented EM (disables the accelerate option automatically; EM only)
- 'Fisher' for the expected information, 'complete' for information based on the complete-data Hessian used in EM algorithm
- 'MHRM' and 'FMHRM' for stochastic approximations of observed information matrix based on the Robbins-Monro filter or a fixed number of MHRM draws without the RM filter. These are the only options supported when method = 'MHRM'
- 'numerical' to obtain the numerical estimate from a call to optim when method = 'BL'

Note that both the 'SEM' method becomes very sensitive if the ML solution has not been reached with sufficient precision, and may be further sensitive if the history of the EM cycles is not stable/sufficient for convergence of the respective estimates. Increasing the number of iterations (increasing NCYCLES and decreasing TOL, see below) will help to improve the accuracy, and can be run in parallel if a mirtCluster object has been defined (this will be used for Oakes' method as well). Additionally, inspecting the symmetry of the ACOV matrix for convergence issues by passing technical = list(symmetric = FALSE) can be helpful to determine if a sufficient solution has been reached

method a character object specifying the estimation algorithm to be used. The default is 'EM', for the standard EM algorithm with fixed quadrature, 'QMCEM' for quasi-Monte Carlo EM estimation, or 'MCEM' for Monte Carlo EM estimation. The option 'MHRM' may also be passed to use the MH-RM algorithm, 'SEM' for the Stochastic EM algorithm (first two stages of the MH-RM stage using an optimizer other than a single Newton-Raphson iteration), and 'BL' for the Bock and Lieberman approach (generally not recommended for longer tests).

The 'EM' is generally effective with 1-3 factors, but methods such as the 'QMCEM', 'MCEM', 'SEM', or 'MHRM' should be used when the dimensions are 3 or more. Note that when the optimizer is stochastic the associated SE.type is automatically changed to SE.type = 'MHRM' by default to avoid the use of quadrature

optimizer a character indicating which numerical optimizer to use. By default, the EM algorithm will use the 'BFGS' when there are no upper and lower bounds box-constraints and 'nlminb' when there are.

Other options include the Newton-Raphson ('NR'), which can be more efficient than the 'BFGS' but not as stable for more complex IRT models (such as the nominal or nested logit models) and the related 'NR1' which is also the Newton-Raphson but consists of only 1 update that has been coupled with RM Hessian (only applicable when the MH-RM algorithm is used). The MH-RM algorithm uses the 'NR1' by default, though currently the 'BFGS', 'L-BFGS-B', and 'NR' are also supported with this method (with fewer iterations by default) to emulate
stochastic EM updates. As well, the 'Nelder-Mead' and 'SANN' estimators are available, but their routine use generally is not required or recommended.

Additionally, estimation subroutines from the Rsolnp and nloptr packages are available by passing the arguments 'solnp' and 'nloptr', respectively. This should be used in conjunction with the solnp_args and nloptr_args specified below. If equality constraints were specified in the model definition only the parameter with the lowest parnum in the pars = 'values' data.frame is used in the estimation vector passed to the objective function, and group hyper-parameters are omitted. Equality an inequality functions should be of the form function(p,optim_args), where optim_args is a list of internally parameters that largely can be ignored when defining constraints (though use of browser() here may be helpful)

dentype
type of density form to use for the latent trait parameters. Current options include

- 'Gaussian' (default) assumes a multivariate Gaussian distribution with an associated mean vector and variance-covariance matrix
- 'empiricalhist' or 'EH' estimates latent distribution using an empirical histogram described by Bock and Aitkin (1981). Only applicable for unidimensional models estimated with the EM algorithm. For this option, the number of cycles, TOL, and quadpts are adjusted accommodate for less precision during estimation (namely: TOL = 3e-5, NCYCLES = 2000, quadpts = 121)
- 'empiricalhist_Woods' or 'EHW' estimates latent distribution using an empirical histogram described by Bock and Aitkin (1981), with the same specifications as in dentype = 'empiricalhist', but with the extrapolation-interpolation method described by Woods (2007). NOTE: to improve stability in the presence of extreme response styles (i.e., all highest or lowest in each item) the technical option zeroExtreme = TRUE may be required to down-weight the contribution of these problematic patterns
- 'Davidian-#' estimates semi-parametric Davidian curves described by Woods and Lin (2009), where the # placeholder represents the number of Davidian parameters to estimate (e.g., 'Davidian-6' will estimate 6 smoothing parameters). By default, the number of quadpts is increased to 121, and this method is only applicable for unidimensional models estimated with the EM algorithm

pars
a data.frame with the structure of how the starting values, parameter numbers, estimation logical values, etc, are defined. The user may observe how the model defines the values by using pars = 'values', and this object can in turn be modified and input back into the estimation with pars = mymodifiedpars

constrain
a list of user declared equality constraints. To see how to define the parameters correctly use pars = 'values' initially to see how the parameters are labeled. To constrain parameters to be equal create a list with separate concatenated vectors signifying which parameters to constrain. For example, to set parameters 1 and 5 equal, and also set parameters 2, 6, and 10 equal use constrain = list(c(1,5),c(2,6,10)). Constraints can also be specified using the mirt.model syntax (recommended)
parprior

a list of user declared prior item probabilities. To see how to define the parameters correctly use `pars = 'values'` initially to see how the parameters are labeled. Can define either normal (e.g., intercepts, lower/guessing and upper bounds), log-normal (e.g., for univariate slopes), or beta prior probabilities. To specify a prior the form is `c('priortype', ...), where normal priors are

\[
\text{parprior} = \text{list}(c(\text{parnumbers}, 'norm', \text{mean}, \text{sd}))
\]

for log-normal, and `parprior = list(c(\text{parnumbers}, 'beta', \text{alpha}, \text{beta}))` for beta, and `parprior = list(c(\text{parnumbers}, 'expbeta', \text{alpha}, \text{beta}))` for the beta distribution after applying the function `plogis` to the input value (note, this is specifically for applying a beta prior to the lower/upper-bound parameters in 3/4PL models). Priors can also be specified using `mirt.model` syntax (recommended)

calcNull

logical; calculate the Null model for additional fit statistics (e.g., TLI)? Only applicable if the data contains no NA’s and the data is not overly sparse

draws

the number of Monte Carlo draws to estimate the log-likelihood for the MH-RM algorithm. Default is 5000

survey.weights

a optional numeric vector of survey weights to apply for each case in the data (EM estimation only). If not specified, all cases are weighted equally (the standard IRT approach). The sum of the `survey.weights` must equal the total sample size for proper weighting to be applied

quadpts

number of quadrature points per dimension (must be larger than 2). By default the number of quadrature uses the following scheme: `switch(as.character(nfact), '1'=61, '2'=31, '3'=15, '4'=9, '5'=7, 3)`. However, if the method input is set to 'QMCEM' and this argument is left blank then the default number of quasi-Monte Carlo integration nodes will be set to 5000 in total

TOL

convergence threshold for EM or MH-RM; defaults are .0001 and .001. If `SE.type = 'SEM'` and this value is not specified, the default is set to 1e-5. To evaluate the model using only the starting values pass `TOL = NaN`, and to evaluate the starting values without the log-likelihood pass `TOL = NA`

gpcm_mats

a list of matrices specifying how the scoring coefficients in the (generalized) partial credit model should be constructed. If omitted, the standard `gpcm` format will be used (i.e., `seq(0, k, by = 1)` for each trait). This input should be used if traits should be scored different for each category (e.g., `matrix(c(0:3,1,0,0,0),4,2)` for a two-dimensional model where the first trait is scored like a gpcm, but the second trait is only positively indicated when the first category is selected). Can be used when `itemtypes` are 'gpcm' or 'Rasch', but only when the respective element in `gpcm_mats` is not NULL

grsm.block

an optional numeric vector indicating where the blocking should occur when using the grsm, NA represents items that do not belong to the grsm block (other items that may be estimated in the test data). For example, to specify two blocks of 3 with a 2PL item for the last item: `grsm.block = c(rep(1,3), rep(2, 3), NA)`. If NULL the all items are assumed to be within the same group and therefore have the same number of item categories

rsm.block

same as `grsm.block`, but for 'rsm' blocks

monopoly.k

a vector of values (or a single value to repeated for each item) which indicate the degree of the monotone polynomial fitted, where the monotone polynomial
mirt

corresponds to \(\text{monopoly.k} \times 2 + 1 \) (e.g., \(\text{monopoly.k} = 2 \) fits a 5th degree polynomial). Default is \(\text{monopoly.k} = 1 \), which fits a 3rd degree polynomial

key
a numeric vector of the response scoring key. Required when using nested logit item types, and must be the same length as the number of items used. Items that are not nested logit will ignore this vector, so use NA in item locations that are not applicable

large
a logical indicating whether unique response patterns should be obtained prior to performing the estimation so as to avoid repeating computations on identical patterns. The default TRUE provides the correct degrees of freedom for the model since all unique patterns are tallied (typically only affects goodness of fit statistics such as G2, but also will influence nested model comparison methods such as anova(mod1,mod2)), while FALSE will use the number of rows in data as a placeholder for the total degrees of freedom. As such, model objects should only be compared if all flags were set to TRUE or all were set to FALSE

Alternatively, if the collapse table of frequencies is desired for the purpose of saving computations (i.e., only computing the collapsed frequencies for the data on-the-time) then a character vector can be passed with the argument large = 'return' to return a list of all the desired table information used by mirt. This list object can then be reused by passing it back into the large argument to avoid re-tallying the data again (again, useful when the dataset are very large and computing the tabulated data is computationally burdensome). This strategy is shown below:

Compute organized data
\text{e.g., } \text{internaldat } \leftarrow \text{mirt(Science,1,large } = \text{'return')}

Pass the organized data to all estimation functions
\text{e.g., } \text{mod } \leftarrow \text{mirt(Science,1,large } = \text{internaldat)}

GenRandomPars
logical: generate random starting values prior to optimization instead of using the fixed internal starting values?

accelerate
a character vector indicating the type of acceleration to use. Default is 'Ramsay', but may also be 'squarem' for the SQUAREM procedure (specifically, the gSqS3 approach) described in Varadhan and Roldand (2008). To disable the acceleration, pass 'none'

verbose
logical: print observed- (EM) or complete-data (MHRM) log-likelihood after each iteration cycle? Default is TRUE

solnp_args
a list of arguments to be passed to the \text{solnp::solnp()} function for equality constraints, inequality constraints, etc

nloptr_args
a list of arguments to be passed to the \text{nloptr::nloptr()} function for equality constraints, inequality constraints, etc

spline_args
a named list of lists containing information to be passed to the \text{bs} (default) and \text{ns} for each spline itemtype. Each element must refer to the name of the itemtype with the spline, while the internal list names refer to the arguments which are passed. For example, if item 2 were called 'read2', and item 5 were called 'read5', both of which were of itemtype 'spline' but item 5 should use the \text{ns} form, then a modified list for each input might be of the form:

\text{spline_args } = \text{list(read2 } = \text{list(degree } = 4), \text{read5 } = \text{list(fun } = \text{'ns'}, \text{knots } = \text{c(-2,2))))}
This code input changes the bs() splines function to have a degree = 4 input, while the second element changes to the ns() function with knots set a c(-2,2).

control

a list passed to the respective optimizers (i.e., optim(), nlminb(), etc). Additional arguments have been included for the 'NR' optimizer: 'tol' for the convergence tolerance in the M-step (default is TOL/1000), while the default number of iterations for the Newton-Raphson optimizer is 50 (modified with the 'maxit' control input).

technical

a list containing lower level technical parameters for estimation. May be:

NCYCLES maximum number of EM or MH-RM cycles; defaults are 500 and 2000

MAXQUAD maximum number of quadratures, which you can increase if you have more than 4GB or RAM on your PC; default 20000

theta_lim range of integration grid for each dimension; default is c(-6,6)

set.seed seed number used during estimation. Default is 12345

SEtol standard error tolerance criteria for the S-EM and MHRM computation of the information matrix. Default is 1e-3

symmetric logical; force S-EM/Oakes information matrix estimates to be symmetric? Default is TRUE so that computation of standard errors are more stable. Setting this to FALSE can help to detect solutions that have not reached the ML estimate

SEM_window ratio of values used to define the S-EM window based on the observed likelihood differences across EM iterations. The default is c(0,1 -SEtol), which provides nearly the very full S-EM window (i.e., nearly all EM cycles used). To use the a smaller SEM window change the window to something like c(.9,.999) to start at a point farther into the EM history

warn logical; include warning messages during estimation? Default is TRUE

message logical; include general messages during estimation? Default is TRUE

customK a numeric vector used to explicitly declare the number of response categories for each item. This should only be used when constructing mirt model for reasons other than parameter estimation (such as to obtain factor scores), and requires that the input data all have 0 as the lowest category. The format is the same as the extract.mirt(mod,'K') slot in all converged models

customPriorFun a custom function used to determine the normalized density for integration in the EM algorithm. Must be of the form function(Theta,Etable){...}, and return a numeric vector with the same length as number of rows in Theta. The Etable input contains the aggregated table generated from the current E-step computations. For proper integration, the returned vector should sum to 1 (i.e., normalized). Note that if using the Etable it will be NULL on the first call, therefore the prior will have to deal with this issue accordingly

default is FALSE
customTheta a custom Theta grid, in matrix form, used for integration. If not defined, the grid is determined internally based on the number of quadpts
delta the deviation term used in numerical estimates when computing the ACOV matrix with the 'forward' or 'central' numerical approaches, as well as Oakes' method with the Richardson extrapolation. Default is 1e-5
parallel logical; use the parallel cluster defined by mirtCluster? Default is TRUE
removeEmptyRows logical; remove response vectors that only contain NA’s? Default is FALSE
internal_constraints logical; include the internal constraints when using certain IRT models (e.g., 'grsm' itemtype). Disable this if you want to use special optimizers such as the solnp. Default is TRUE
gain a vector of two values specifying the numerator and exponent values for the RM gain function (val1/cycle)^val2. Default is c(0.10,0.75)
BURNIN number of burn in cycles (stage 1) in MH-RM; default is 150
SEMCYCLES number of SEM cycles (stage 2) in MH-RM; default is 100
MHDRAWS number of Metropolis-Hasting draws to use in the MH-RM at each iteration; default is 5
MIHcand a vector of values used to tune the MH sampler. Larger values will cause the acceptance ratio to decrease. One value is required for each group in unconditional item factor analysis (mixedmirt() requires additional values for random effect). If null, these values are determined internally, attempting to tune the acceptance of the draws to be between .1 and .4
MHRM_SE_draws number of fixed draws to use when SE=TRUE and SE.type = 'FMHRM' and the maximum number of draws when SE.type = 'MHRM'. Default is 2000
MCEM_draws a function used to determine the number of quadrature points to draw for the 'MCEM' method. Must include one argument which indicates the iteration number of the EM cycle. Default is function(cycles) 500 + (cycles -1)*2, which starts the number of draws at 500 and increases by 2 after each full EM iteration
info_if_converged logical; compute the information matrix when using the MH-RM algorithm only if the model converged within a suitable number of iterations? Default is TRUE
logLik_if_converged logical; compute the observed log-likelihood when using the MH-RM algorithm only if the model converged within a suitable number of iterations? Default is TRUE
keep_vcov_PD logical; attempt to keep the variance-covariance matrix of the latent traits positive definite during estimation in the EM algorithm? This generally improves the convergence properties when the traits are highly correlated. Default is TRUE

Value

function returns an object of class SingleGroupClass (SingleGroupClass-class)
Confirmatory and Exploratory IRT

Specification of the confirmatory item factor analysis model follows many of the rules in the structural equation modeling framework for confirmatory factor analysis. The variances of the latent factors are automatically fixed to 1 to help facilitate model identification. All parameters may be fixed to constant values or set equal to other parameters using the appropriate declarations. Confirmatory models may also contain 'explanatory' person or item level predictors, though including predictors is currently limited to the mixedmirt function.

When specifying a single number greater than 1 as the model input to mirt an exploratory IRT model will be estimated. Rotation and target matrix options are available if they are passed to generic functions such as summary-method and fscores. Factor means and variances are fixed to ensure proper identification.

If the model is an exploratory item factor analysis estimation will begin by computing a matrix of quasi-polychoric correlations. A factor analysis with nfact is then extracted and item parameters are estimated by $a_{ij} = f_{ij}/u_j$, where f_{ij} is the factor loading for the jth item on the ith factor, and u_j is the square root of the factor uniqueness, $\sqrt{1-h_j^2}$. The initial intercept parameters are determined by calculating the inverse normal of the item facility (i.e., item easiness), q_j, to obtain $d_j = q_j/u_j$. A similar implementation is also used for obtaining initial values for polytomous items.

A note on upper and lower bound parameters

Internally the g and u parameters are transformed using a logit transformation ($\log(x/(1-x))$), and can be reversed by using $1/(1+exp(-x))$ following convergence. This also applies when computing confidence intervals for these parameters, and is done so automatically if coef(mod, rawug = FALSE).

As such, when applying prior distributions to these parameters it is recommended to use a prior that ranges from negative infinity to positive infinity, such as the normally distributed prior via the 'norm' input (see mirt.model).

Convergence for quadrature methods

Unrestricted full-information factor analysis is known to have problems with convergence, and some items may need to be constrained or removed entirely to allow for an acceptable solution. As a general rule dichotomous items with means greater than .95, or items that are only .05 greater than the guessing parameter, should be considered for removal from the analysis or treated with prior parameter distributions. The same type of reasoning is applicable when including upper bound parameters as well. For polytomous items, if categories are rarely endorsed then this will cause similar issues. Also, increasing the number of quadrature points per dimension, or using the quasi-Monte Carlo integration method, may help to stabilize the estimation process in higher dimensions. Finally, solutions that are not well defined also will have difficulty converging, and can indicate that the model has been misspecified (e.g., extracting too many dimensions).

Convergence for MH-RM method

For the MH-RM algorithm, when the number of iterations grows very high (e.g., greater than 1500) or when Max Change = .2500 values are repeatedly printed to the console too often (indicating that the parameters were being constrained since they are naturally moving in steps greater than
then the model may either be ill defined or have a very flat likelihood surface, and genuine maximum-likelihood parameter estimates may be difficult to find. Standard errors are computed following the model convergence by passing \(\text{SE} = \text{TRUE} \) to perform an addition MH-RM stage but treating the maximum-likelihood estimates as fixed points.

Additional helper functions

Additional functions are available in the package which can be useful pre- and post-estimation. These are:

- `mirt.model` Define the IRT model specification use special syntax. Useful for defining between and within group parameter constraints, prior parameter distributions, and specifying the slope coefficients for each factor.
- `coef-method` Extract raw coefficients from the model, along with their standard errors and confidence intervals.
- `summary-method` Extract standardized loadings from model. Accepts a `rotate` argument for exploratory item response model.
- `anova-method` Compare nested models using likelihood ratio statistics as well as information criteria such as the AIC and BIC.
- `residuals-method` Compute pairwise residuals between each item using methods such as the LD statistic (Chen & Thissen, 1997), as well as response pattern residuals.
- `plot-method` Plot various types of test level plots including the test score and information functions and more.
- `itemplot` Plot various types of item level plots, including the score, standard error, and information functions, and more.
- `createItem` Create a customized `itemtype` that does not currently exist in the package.
- `imputeMissing` Impute missing data given some computed Theta matrix.
- `fscores` Find predicted scores for the latent traits using estimation methods such as EAP, MAP, ML, WLE, and EAPsum.
- `wald` Compute Wald statistics follow the convergence of a model with a suitable information matrix.
- `M2` Limited information goodness of fit test statistic based to determine how well the model fits the data.
- `itemfit` and `personfit` Goodness of fit statistics at the item and person levels, such as the S-X2, infit, outfit, and more.
- `boot.mirt` Compute estimated parameter confidence intervals via the bootstrap methods.
- `mirtCluster` Define a cluster for the package functions to use for capitalizing on multi-core architecture to utilize available CPUs when possible. Will help to decrease estimation times for tasks that can be run in parallel.

IRT Models

The parameter labels use the follow convention, here using two factors and \(K \) as the total number of categories (using \(k \) for specific category instances).
Only one intercept estimated, and the latent variance of θ is freely estimated. If the data have more than two categories then a partial credit model is used instead (see ‘gpcm’ below).

$$P(x = 1|\theta, d) = \frac{1}{1 + exp(-(\theta + d))}$$

2-4PL. Depending on the model u may be equal to 1 and g may be equal to 0.

$$P(x = 1|\theta, \psi) = g + \frac{(u - g)}{1 + exp(-(a_1 * \theta_1 + a_2 * \theta_2 + d))}$$

graded. The graded model consists of sequential 2PL models,

$$P(x = k|\theta, \psi) = P(x \geq k|\theta, \phi) - P(x \geq k + 1|\theta, \phi)$$

Note that $P(x \geq 1|\theta, \psi) = 1$ while $P(x \geq K + 1|\theta, \phi) = 0$

grsm and grsmIRT. A more constrained version of the graded model where graded spacing is equal across item blocks and only adjusted by a single 'difficulty' parameter (c) while the latent variance of θ is freely estimated. Again,

$$P(x = k|\theta, \psi) = P(x \geq k|\theta, \phi) - P(x \geq k + 1|\theta, \phi)$$

but now

$$P = \frac{1}{1 + exp(-(a_1 * \theta_1 + a_2 * \theta_2 + d_k + c))}$$

The grsmIRT model is similar to the grsm item type, but uses the IRT parameterization instead (see Muraki, 1990 for this exact form). This is restricted to unidimensional models only, whereas grsm may be used for unidimensional or multidimensional models and is more consistent with the form of other IRT models in mirt.

gpcm/nominal. For the gpcm the d values are treated as fixed and ordered values from 0 : $(K - 1)$ (in the nominal model d_0 is also set to 0). Additionally, for identification in the nominal model $a_{k_0} = 0, a_{k(K-1)} = (K - 1)$.

$$P(x = k|\theta, \psi) = \frac{exp(a_{k-1} * (a_1 * \theta_1 + a_2 * \theta_2) + d_{k-1})}{\sum_{k=1}^{K} exp(a_{k-1} * (a_1 * \theta_1 + a_2 * \theta_2) + d_{k-1})}$$

For the partial credit model (when itemtype = ‘Rasch’; unidimensional only) the above model is further constrained so that $a_k = (0, 1, \ldots, K - 1), a_1 = 1$, and the latent variance of θ_1 is freely estimated. Alternatively, the partial credit model can be obtained by containing all the slope parameters in the gpcms to be equal. More specific scoring function may be included by passing a suitable list or matrices to the gpcm_mat's input argument.

In the nominal model this parametrization helps to identify the empirical ordering of the categories by inspecting the a_k values. Larger values indicate that the item category is more positively related to the latent trait(s) being measured. For instance, if an item was truly ordinal (such as a Likert scale), and had 4 response categories, we would expect to see $a_{k_0} < a_{k_1} < a_{k_2} < a_{k_3}$ following estimation. If on the other hand $a_{k_0} > a_{k_3}$ then it would appear that the second category is less related to to the trait than the first, and therefore the second category should be understood as the 'lowest score'.

NOTE: The nominal model can become numerical unstable if poor choices for the high and low values are chosen, resulting in a_k values greater than $abs(10)$ or more. It is recommended to choose high and low anchors that cause the estimated parameters to fall between 0 and $K - 1$ either by theoretical means or by re-estimating the model with better values following convergence.
gpcmIRT and rsm The gpcmIRT model is the classical generalized partial credit model for unidimensional response data. It will obtain the same fit as the gpcm presented above, however the parameterization allows for the Rasch/generalized rating scale model as a special case.

E.g., for a $K = 4$ category response model,

$$P(x = 0|\theta, \psi) = \frac{\exp(1)}{G}$$

$$P(x = 1|\theta, \psi) = \frac{\exp(1 + a(\theta - b_1) + c)}{G}$$

$$P(x = 2|\theta, \psi) = \frac{\exp(1 + a(2\theta - b_1 - b_2) + 2c)}{G}$$

$$P(x = 3|\theta, \psi) = \frac{\exp(1 + a(3\theta - b_1 - b_2 - b_3) + 3c)}{G}$$

where

$$G = \exp(1) + \exp(1 + a(\theta - b_1) + c) + \exp(1 + a(2\theta - b_1 - b_2) + 2c) + \exp(1 + a(3\theta - b_1 - b_2 - b_3) + 3c)$$

Here a is the slope parameter, the b parameters are the threshold values for each adjacent category, and c is the so-called difficulty parameter when a rating scale model is fitted (otherwise, $c = 0$ and it drops out of the computations).

The gpcmIRT can be constrained to the partial credit IRT model by either constraining all the slopes to be equal, or setting the slopes to 1 and freeing the latent variance parameter.

Finally, the rsm is a more constrained version of the (generalized) partial credit model where the spacing is equal across item blocks and only adjusted by a single ‘difficulty’ parameter (c). Note that this is analogous to the relationship between the graded model and the grsm (with an additional constraint regarding the fixed discrimination parameters).

sequential/Tutz The multidimensional sequential response model has the form

$$P(x = k|\theta, \psi) = \prod (1 - F(a_1 \theta_1 + a_2 \theta_2 + d_{sk})F(a_1 \theta_1 + a_2 \theta_2 + d_{jk})$$

where $F(\cdot)$ is the cumulative logistic function. The Tutz variant of this model (Tutz, 1990) (via itemtype = ‘Tutz’) assumes that the slope terms are all equal to 1 and the latent variance terms are estimated (i.e., is a Rasch variant).

ideal The ideal point model has the form, with the upper bound constraint on d set to 0:

$$P(x = 1|\theta, \psi) = \exp(-0.5 * (a_1 \theta_1 + a_2 \theta_2 + d)^2)$$

partcomp Partially compensatory models consist of the product of 2PL probability curves.

$$P(x = 1|\theta, \psi) = g + (1 - g)\left(\frac{1}{1 + \exp(-(a_1 \theta_1 + d_1))} \ast \frac{1}{1 + \exp(-(a_2 \theta_2 + d_2))}\right)$$

Note that constraining the slopes to be equal across items will reduce the model to Embretson’s (a.k.a. Whitely’s) multicomponent model (1980).

2-4PLNRM Nested logistic curves for modeling distractor items. Requires a scoring key. The model is broken into two components for the probability of endorsement. For successful endorsement the probability trace is the 1-4PL model, while for unsuccessful endorsement:

$$P(x = 0|\theta, \psi) = (1 - P_{1-4PL}(x = 1|\theta, \psi)) \ast P_{nominal}(x = k|\theta, \psi)$$

which is the product of the complement of the dichotomous trace line with the nominal response model. In the nominal model, the slope parameters defined above are constrained to be 1’s, while the last value of the ak is freely estimated.
ggum The (multidimensional) generalized graded unfolding model is a class of ideal point models useful for ordinal response data. The form is

\[
P(z = k | \theta, \psi) = \frac{\exp \left(z \sqrt{\sum_{d=1}^{D} a_{id}^2 (\theta_{jd} - b_{id})^2} + \sum_{k=0}^{C} \psi_{ik} \right) + \exp \left((M - z) \sqrt{\sum_{d=1}^{D} a_{id}^2 (\theta_{jd} - b_{id})^2} + \sum_{k=0}^{C} \psi_{ik} \right) + \exp \left((M - w) \sqrt{\sum_{d=1}^{D} a_{id}^2 (\theta_{jd} - b_{id})^2} + \sum_{k=0}^{C} \psi_{ik} \right)}{\sum_{w=0}^{C} \exp \left(w \sqrt{\sum_{d=1}^{D} a_{id}^2 (\theta_{jd} - b_{id})^2} + \sum_{k=0}^{C} \psi_{ik} \right) + \exp \left((M - z) \sqrt{\sum_{d=1}^{D} a_{id}^2 (\theta_{jd} - b_{id})^2} + \sum_{k=0}^{C} \psi_{ik} \right) + \exp \left((M - w) \sqrt{\sum_{d=1}^{D} a_{id}^2 (\theta_{jd} - b_{id})^2} + \sum_{k=0}^{C} \psi_{ik} \right)}
\]

where \(\theta_{jd} \) is the location of the \(j \)th individual on the \(d \)th dimension, \(b_{id} \) is the difficulty location of the \(i \)th item on the \(d \)th dimension, \(a_{id} \) is the discrimination of the \(j \)th individual on the \(d \)th dimension (where the discrimination values are constrained to be positive), \(\psi_{ik} \) is the \(k \)th subjective response category threshold for the \(i \)th item, assumed to be symmetric about the item and constant across dimensions, where \(\psi_{ik} = \sum_{d=1}^{D} a_{id} t_{ik} \) \(z = 1, 2, \ldots, C \) (where \(C \) is the number of categories minus 1), and \(M = 2C + 1 \).

spline Spline response models attempt to model the response curves uses non-linear and potentially non-monotonic patterns. The form is

\[
P(x = 1 | \theta, \eta) = \frac{1}{1 + \exp(-(\eta_1 * X_1 + \eta_2 * X_2 + \cdots + \eta_n * X_n))}
\]

where the \(X_n \) are from the spline design matrix \(X \) organized from the grid of \(\theta \) values. B-splines with a natural or polynomial basis are supported, and the intercept input is set to TRUE by default.

monopoly Monotone polynomial model for polytomous response data of the form

\[
P(x = k | \theta, \psi) = \frac{\exp(\sum_{1}^{K} (m^*(\psi) + \xi_{c-1}))}{\sum_{1}^{C} \exp(\sum_{1}^{K} (m^*(\psi) + \xi_{c-1}))}
\]

where \(m^*(\psi) \) is the monotone polynomial function without the intercept.

HTML help files, exercises, and examples

To access examples, vignettes, and exercise files that have been generated with knitr please visit https://github.com/philchalmers/mirt/wiki.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

See Also

`bfactor, multipleGroup, mixedmirt, expand.table, key2binary, mod2values, extract.item, iteminfo, testinfo, probtrace, simdata, averageMI, fixef, extract.mirt`

Examples

```r
#load LSAT section 7 data and compute 1 and 2 factor models
data <- expand.table(LSAT7)

(mod1 <- mirt(data, 1))
coef(mod1)
summary(mod1)
plot(mod1)
plot(mod1, type = 'trace')

## Not run:
(mod2 <- mirt(data, 1, SE = TRUE)) #standard errors via the Qakes method
(mod2 <- mirt(data, 1, SE = TRUE, SE.type = 'SEM')) #standard errors with SEM method
coef(mod2)
(mod3 <- mirt(data, 1, SE = TRUE, SE.type = 'Richardson')) #with numerical Richardson method
residuals(mod1)
plot(mod1) #test score function
plot(mod1, type = 'trace') #trace lines
plot(mod2, type = 'info') #test information
plot(mod2, MI=200) #expected total score with 95% confidence intervals

#estimated 3PL model for item 5 only
(mod1.3PL <- mirt(data, 1, itemtype = c('2PL', '2PL', '2PL', '2PL', '3PL')))
coef(mod1.3PL)

#internally g and u pars are stored as logits, so usually a good idea to include normal prior
# to help stabilize the parameters. For a value around .182 use a mean
# of -1.5 (since 1 / (1 + exp(-(-1.5))) == .182)
model <- 'F = 1-5
    PRIOR = (5, g, norm, -1.5, 3)'
mod1.3PL.norm <- mirt(data, model, itemtype = c('2PL', '2PL', '2PL', '2PL', '3PL'))
```
coef(mod1.3PL.norm)
limited information fit statistics
M2(mod1.3PL.norm)

unidimensional ideal point model
idealpt <- mirt(data, 1, itemtype = 'ideal')
plot(idealpt, type = 'trace', facet_items = TRUE)
plot(idealpt, type = 'trace', facet_items = FALSE)

two factors (exploratory)
mod2 <- mirt(data, 2)
coef(mod2)
summary(mod2, rotate = 'oblimin') # oblimin rotation
residuals(mod2)
plot(mod2)
plot(mod2, rotate = 'oblimin')

anova(mod1, mod2) # compare the two models
scoresfull <- fscores(mod2) # factor scores for each response pattern
head(scoresfull)
scorestable <- fscores(mod2, full.scores = FALSE) # save factor score table
head(scorestable)

confirmatory (as an example, model is not identified since you need 3 items per factor)
Two ways to define a confirmatory model: with mirt.model, or with a string

these model definitions are equivalent
cmodel <- mirt.model('F1 = 1,4,5
F2 = 2,3')
cmodel2 <- 'F1 = 1,4,5
F2 = 2,3'

cmod <- mirt(data, cmodel)
cmod <- mirt(data, cmodel2) # same as above
coef(cmod)
anova(cmod, mod2)
check if identified by computing information matrix
(cmod <- mirt(data, cmodel, SE = TRUE))

##########
data from the 'ltm' package in numeric format
pmod1 <- mirt(Science, 1)
plot(pmod1)
plot(pmod1, type = 'trace')
plot(pmod1, type = 'itemscore')
summary(pmod1)

constrain all slopes to be equal with the constrain = list() input or mirt.model() syntax
first obtain parameter index
values <- mirt(Science, 1, pars = 'values')
values # note that slopes are numbered 1,5,9,13, or index with values$parsnum[values$name == 'a1']
(pmod1_equalslopes <- mirt(Science, 1, constrain = list(c(1,5,9,13))))
coef(pmod1_equalslopes)

using mirt.model syntax, constrain all item slopes to be equal
model <- 'F = 1-4
 CONSTRAIN = (1-4, a1)'
(pmod1_equalslopes <- mirt(Science, model))
coef(pmod1_equalslopes)

anova(pmod1_equalslopes, pmod1) # significantly worse fit with almost all criteria

pmod2 <- mirt(Science, 2)
summary(pmod2)
plot(pmod2, rotate = 'oblimin')
itemplot(pmod2, 1, rotate = 'oblimin')
anova(pmod1, pmod2)

unidimensional fit with a generalized partial credit and nominal model
(gpcmod <- mirt(Science, 1, 'gpcm'))
coef(gpcmod)

for the nominal model the lowest and highest categories are assumed to be the
theoretically lowest and highest categories that related to the latent trait(s)
(nomod <- mirt(Science, 1, 'nominal'))
coef(nomod) # ordering of ak values suggest that the items are indeed ordinal
anova(gpcmod, nomod)
itemplot(nomod, 3)

generalized graded unfolding model
(ggum <- mirt(Science, 1, 'ggum'))
coef(ggum, simplify=TRUE)
plot(ggum)
plot(ggum, type = 'trace')
plot(ggum, type = 'itemscore')

monotonic polynomial models
(monopoly <- mirt(Science, 1, 'monopoly'))
coef(monopoly, simplify=TRUE)
plot(monopoly)
plot(monopoly, type = 'trace')
plot(monopoly, type = 'itemscore')

example applying survey weights.
weight the first half of the cases to be more representative of population
survey.weights <- c(rep(2, nrow(Science)/2), rep(1, nrow(Science)/2))
survey.weights <- survey.weights/sum(survey.weights) * nrow(Science)
unweighted <- mirt(Science, 1)
weighted <- mirt(Science, 1, survey.weights=survey.weights)

????????????
empirical dimensionality testing that includes 'guessing'
data(SAT12)
data <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))

mod1 <- mirt(data, 1)
extract.mirt(mod1, 'time') # time elapsed for each estimation component

Optionally use Newton-Raphson for (generally) faster convergence in the M-step's
mod1 <- mirt(data, 1, optimizer = 'NR')
extract.mirt(mod1, 'time')

mod2 <- mirt(data, 2, optimizer = 'NR')
difficulty converging with reduced quad pts, reduce TOL
mod3 <- mirt(data, 3, TOL = .001, optimizer = 'NR')
anova(mod1, mod2)
anova(mod2, mod3) # negative AIC, 2 factors probably best

Same as above, but using the QMCEM method for generally better accuracy in mod3
mod3 <- mirt(data, 3, method = 'QMCEM', TOL = .001, optimizer = 'NR')
anova(mod2, mod3)

With fixed guessing parameters
mod1g <- mirt(data, 1, guess = .1)
coef(mod1g)

Graded rating scale example
Make some data
set.seed(1234)
a <- matrix(rep(1, 10))
d <- matrix(c(1,0.5,-.5,-1), 10, 4, byrow = TRUE)
c <- seq(-1, 1, length.out = 10)
data <- simdata(a, d + c, 2000, itemtype = rep('graded', 10))

mod1 <- mirt(data, 1)
mod2 <- mirt(data, 1, itemtype = 'grsm')
coef(mod2)
anova(mod2, mod1) # not sig, mod2 should be preferred
itemplot(mod2, 1)
itemplot(mod2, 5)
itemplot(mod2, 10)

2PL nominal response model example (Suh and Bolt, 2010)
data(SAT12)
SAT12[SAT12 == 8] <- NA # set 8 as a missing value
head(SAT12)

Correct answer key
key <- c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5)
scoredSAT12 <- key2binary(SAT12, key)
mod0 <- mirt(scoredSAT12, 1)
for first 5 items use 2PLNRM and nominal
scoredSAT12[,1:5] <- as.matrix(SAT12[,1:5])
mod1 <- mirt(scoredSAT12, 1, c(rep('nominal',5),rep('2PL', 27)))
mod2 <- mirt(scoredSAT12, 1, c(rep('2PLNRM',5),rep('2PL', 27)), key=key)
coef(mod0)$Item.1
coef(mod1)$Item.1
coef(mod2)$Item.1
itemplot(mod0, 1)
itemplot(mod1, 1)
itemplot(mod2, 1)

compare added information from distractors
Theta <- matrix(seq(-4,4,.01))
par(mfrow = c(2,3))
for(i in 1:5){
 info <- iteminfo(extract.item(mod0,i), Theta)
 info2 <- iteminfo(extract.item(mod2,i), Theta)
 plot(Theta, info2, type = 'l', main = paste('Information for item', i), ylab = 'Information')
 lines(Theta, info, col = 'red')
}
par(mfrow = c(1,1))

test information
plot(Theta, testinfo(mod2, Theta), type = 'l', main = 'Test information', ylab = 'Information')
lines(Theta, testinfo(mod0, Theta), col = 'red')

###########
using the MH-RM algorithm
data(LSAT7)
fulldata <- expand.table(LSAT7)
(mod1 <- mirt(fulldata, 1, method = 'MHRM'))

Confirmatory models

simulate data
a <- matrix(c(1.5,NA,
0.5,NA,
1.0,NA,
1.0,0.5,
NA,1.5,
NA,0.5,
NA,1.0,
NA,1.0),ncol=2,byrow=TRUE)

d <- matrix(c(-1.0,NA,NA,
-1.5,NA,NA,
1.5,NA,NA,
0.0,NA,NA,
3.0,2.0,-0.5,
2.5,1.0,-1,
2.0,0.0,NA,
2.0,0.0,NA,
2.0,0.0,NA))
sigma <- diag(2)
sigma[1, 2] <- sigma[2, 1] <- .4
items <- c(rep('2PL', 4), rep('graded', 3), '2PL')
dataset <- simdata(a, d, 2000, items, sigma)

analyses
CIFA for 2 factor crossed structure

model.1 <- 'F1 = 1-4
 F2 = 4-8
 COV = F1xF2'

compute model, and use parallel computation of the log-likelihood
mirtCluster()
mod1 <- mirt(dataset, model.1, method = 'MHRM')
coef(mod1)
summary(mod1)
residuals(mod1)

#####
bifactor

model.3 <- 'G = 1-8
 F1 = 1-4
 F2 = 5-8'

mod3 <- mirt(dataset, model.3, method = 'MHRM')
coef(mod3)
summary(mod3)
residuals(mod3)
anova(mod1, mod3)

#####
polynomial/combinations

data(SAT12)
data <- key2binary(SAT12,
 key = c(1, 4, 5, 2, 3, 1, 2, 1, 3, 1, 2, 4, 2, 1, 5, 3, 4, 1, 4, 3, 3, 4, 1, 3, 5, 1, 3, 1, 5, 4, 5))

model.quad <- 'F1 = 1-32
 (F1xF1) = 1-32'

model.combo <- 'F1 = 1-16
 F2 = 17-32
 (F1xF2) = 1-8'

(mod.quad <- mirt(data, model.quad))
summary(mod.quad)
mirt

(mod.combo <- mirt(data, model.combo))
anova(mod.quad, mod.combo)

#non-linear item and test plots
plot(mod.quad)
plot(mod.combo, type = 'SE')
itemplot(mod.quad, 1, type = 'score')
itemplot(mod.combo, 2, type = 'score')
itemplot(mod.combo, 2, type = 'infocontour')

empirical histogram examples (normal, skew and bimodality)
#make some data
set.seed(1234)
a <- matrix(rlnorm(50, .2, .2))
d <- matrix(rnorm(50))
ThetaNormal <- matrix(rnorm(2000))
ThetaBimodal <- scale(matrix(c(rnorm(1000, -2), rnorm(1000, 2)))) #bimodal
ThetaSkew <- scale(matrix(rchisq(2000, 3))) #positive skew
datNormal <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaNormal)
datBimodal <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaBimodal)
datSkew <- simdata(a, d, 2000, itemtype = '2PL', Theta=ThetaSkew)

normal <- mirt(datNormal, 1, dentype = "empiricalhist")
plot(normal, type = 'empiricalhist')
histogram(ThetaNormal, breaks=30)
bimodal <- mirt(datBimodal, 1, dentype = "empiricalhist")
plot(bimodal, type = 'empiricalhist')
histogram(ThetaBimodal, breaks=30)
skew <- mirt(datSkew, 1, dentype = "empiricalhist")
plot(skew, type = 'empiricalhist')
histogram(ThetaSkew, breaks=30)

#####
non-linear parameter constraints with Rsolnp package (nloptr supported as well):
Find Rasch model subject to the constraint that the intercepts sum to 0

dat <- expand.table(LSAT6)

#free latent mean and variance terms
model <- 'Theta = 1-5
 MEAN = Theta
 COV = Theta*Theta'

#view how vector of parameters is organized internally
sv <- mirt(dat, model, itemtype = 'Rasch', pars = 'values')
sv[sv$est,]

#constraint: create function for solnp to compute constraint, and declare value in eqB
eqfun <- function(p, optim_args) sum(p[1:5]) #could use browser() here, if it helps
LB <- c(rep(-15, 6), 1e-4) # more reasonable lower bound for variance term
mod <- mirt(dat, model, sv=sv, itemtype = 'Rasch', optimizer = 'solnp',
 solnp_args=list(eqfun=eqfun, eqB=0, LB=LB))
print(mod)
coef(mod)
(ds <- sapply(coef(mod)[1:5], function(x) x[, 'd'])))
sum(ds)

same likelihood location as: mirt(dat, 1, itemtype = 'Rasch')

####
latent regression Rasch model

simulate data
set.seed(1234)
N <- 1000

covariates
X1 <- rnorm(N); X2 <- rnorm(N)
covdata <- data.frame(X1, X2)
Theta <- matrix(0.5 * X1 + -1 * X2 + rnorm(N, sd = 0.5))

items and response data
a <- matrix(1, 20); d <- matrix(rnorm(20))
dat <- simdata(a, d, 1000, itemtype = '2PL', Theta=Theta)

unconditional Rasch model
mod0 <- mirt(dat, 1, 'Rasch')

conditional model using X1 and X2 as predictors of Theta
mod1 <- mirt(dat, 1, 'Rasch', covdata=covdata, formula = ~ X1 + X2)
coef(mod1, simplify=TRUE)
anova(mod0, mod1)

bootstrapped confidence intervals
boot.mirt(mod1, R=5)

draw plausible values for secondary analyses
pv <- fscores(mod1, plausible.draws = 10)
pvmods <- lapply(pv, function(x, covdata) lm(x ~ covdata$X1 + covdata$X2),
 covdata=covdata)
population characteristics recovered well, and can be averaged over
so <- lapply(pvmods, summary)

compute Rubin's multiple imputation average
par <- lapply(so, function(x) x$coefficients[, 'Estimate'])
SEstpar <- lapply(so, function(x) x$coefficients[, 'Std. Error'])
averageMI(par, SEstpar)

#########
Example using Gauss-Hermite quadrature with custom input functions
library(fastGHQuad)
data(SAT12)
data <- key2binary(SAT12,
 key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
GH <- gaussHermiteData(50)
Theta <- matrix(GH$x)

This prior works for uni- and multi-dimensional models
prior <- function(Theta, Etable){
P <- grid <- GH$w / sqrt(pi)
if(ncol(Theta) > 1)
 for(i in 2:ncol(Theta))
 P <- expand.grid(P, grid)
if(!is.vector(P)) P <- apply(P, 1, prod)
P
}

GHmod1 <- mirt(data, 1, optimizer = 'NR',
 technical = list(customTheta = Theta, customPriorFun = prior))
coef(GHmod1, simplify=TRUE)

Theta2 <- as.matrix(expand.grid(Theta, Theta))
GHmod2 <- mirt(data, 2, optimizer = 'NR', TOL = .0002,
 technical = list(customTheta = Theta2, customPriorFun = prior))
summary(GHmod2, suppress=.2)

##########
Davidian curve example

dat <- key2binary(SAT12,
 key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
dav <- mirt(dat, 1, dentype = 'Davidian-4') # use four smoothing parameters
plot(dav, type = 'Davidian') # shape of latent trait distribution
coef(dav, simplify=TRUE)

fs <- fscores(dav) # assume normal prior
fs2 <- fscores(dav, use_dentype_estimate=TRUE) # use Davidian estimated prior shape
head(cbind(fs, fs2))

itemfit(dav) # assume normal prior
itemfit(dav, use_dentype_estimate=TRUE) # use Davidian estimated prior shape

End(Not run)
Description

The `mirt.model` function scans/reads user input to specify the confirmatory model. Item locations must be used in the specifications if no `itemnames` argument is supplied. This is called implicitly by estimation functions when a string is passed to the `model` argument.

Usage

```r
mirt.model(
  input = NULL,
  itemnames = NULL,
  file = "",
  COV = NULL,
  quiet = TRUE,
  ...
)
```

Arguments

- `input` input for writing out the model syntax. Can either be a string declaration of class character or the so-called Q-matrix or class matrix that specifies the model either with integer or logical values. If the Q-matrix method is chosen covariances terms can be specified with the `COV` input.
- `itemnames` a character vector or factor indicating the item names. If a data.frame or matrix object is supplied the names will be extracted using `colnames(itemnames)`. Supplying this input allows the syntax to be specified with the raw item names rather than item locations.
- `file` a input specifying an external file that declares the input.
- `COV` a symmetric, logical matrix used to declare which covariance terms are estimated.
- `quiet` logical argument passed to `scan()` to suppress console read message.
- `...` additional arguments for `scan()`.

Details

Factors are first named and then specify which numerical items they affect (i.e., where the slope is not equal to 0), separated either by commas or by - to indicate a range of items. Products between factors may be specified by enclosing the left hand term within brackets. To finish the declaration of a model simply enter a blank line with only a carriage return (i.e., the 'enter' or 'return' key), or instead read in an input version of the model syntax. The associated slopes throughout the package label these coefficients as \(a_1, a_2, \ldots, a_k \), where the associated number is assigned according to the respective order of the defined factors.

For example, if the syntax were

```
"G = 1-10 F = 1-5 A = 6-10"
```

then the G factor would be assigned the slopes \(a_1 \) for each item, \(F \) assigned the slopes \(a_2 \), and \(A \) assigned the slopes \(a_3 \). The same principle applies to the `bfactor` function whereby the slopes are automatically included for the specific factors after the general factor structure has been assigned.
There is an optional keyword for specifying the correlation between relationships between factors called COV, and non-linear factor products can be included by enclosing the product combination on the left hand side of the declaration (e.g., \((F1\times F1)\) would create a quadratic factor for \(F1\)).

The keywords CONSTRAN, CONSTRANB, PRIOR, FIXED, FREE, START, UBOUND, LBOUND can be applied to specific sub-groups in multiple-group models by included square brackets before the = sign, where groups are separated by commas. For example, to apply within-group equality constraints to a group called "male", then specifying:

\[
\text{CONSTRAN [male]} = (1\text{-}5, a1)
\]

is appropriate, while specifying the same constraints to the sub-groups "male" and "female" would appear as

\[
\text{CONSTRAN [male, female]} = (1\text{-}5, a1)
\]

For all other groups in the multi-group model, these within-group equality constraints would not appear. Therefore, these bracketed group specifications are useful when modifying priors, starting values, between/within group equality constraints, and so on when the specifications for each sub-group may differ.

Finally, the keyword GROUP can be used to specify the group-level hyper-parameter terms, such as the means and variance of the default Gaussian distribution. For example, to set the starting value of the variance parameter \((\text{COV}_{11})\) to 1.5:

\[
\text{START} = (\text{GROUP, COV}_{11}, 1.5)
\]

COV Specify the relationship between the latent factors. Estimating a correlation between factors is declared by joining the two factors with an asterisk (e.g., \(F1\times F2\)), or with an asterisk between three or more factors to estimate all the possible correlations (e.g., \(F1\times F2\times F3\)).

MEAN A comma separated list specifying which latent factor means to freely estimate. E.g., MEAN = \(F1, F2\) will free the latent means for factors \(F1\) and \(F2\).

CONSTRAN A bracketed, comma separated list specifying equality constrains between items. The input format is \(\text{CONSTRAN} = (\text{items},...\text{,parameterName}(...)\), (\text{items},...\text{,parameterName})\).

For example, in a single group 10-item dichotomous tests, using the default 2PL model, the first and last 5 item slopes \((a1)\) can be constrained to be equal by using \(\text{CONSTRAN} = (1\text{-}5, a1), (6\text{-}10, a1)\), or some combination such as \(\text{CONSTRAN} = (1\text{-}3, 4, 5, a1), (6, 7, 8\text{-}10, a1)\).

When constraining parameters to be equal across items with different parameter names, a balanced bracketed vector must be supplied. E.g., setting the first slope for item 1 equal to the second slope in item 3 would be \(\text{CONSTRAN} = (1, 3, a1, a2)\).

CONSTRANB A bracketed, comma separate list specifying equality constrains between groups. The input format is \(\text{CONSTRANB} = (\text{items},...\text{,parameterName}), (\text{items},...\text{,parameterName})\).

For example, in a two group 10-item dichotomous tests, using the default 2PL model, the first 5 item slopes \((a1)\) can be constrained to be equal across both groups by using \(\text{CONSTRANB} = (1\text{-}5, a1)\), or some combination such as \(\text{CONSTRANB} = (1\text{-}3, 4, 5, a1)\).

PRIOR A bracketed, comma separate list specifying prior parameter distributions. The input format is \(\text{PRIOR} = (\text{items},...\text{,parameterName}, \text{priorType}, \text{val1}, \text{val2}), (\text{items},...\text{,parameterName}, \text{priorType}, \text{val1}, \text{val2})\).

For example, in a single group 10-item dichotomous tests, using the default 2PL model, defining a normal prior of \(N(0,2)\) for the first 5 item intercepts \((d)\) can be defined by \(\text{PRIOR} = (1\text{-}5, d, \text{norm}, 0, 2)\).

Currently supported priors are of the form: \((\text{items}, \text{norm}, \text{mean}, \text{sd})\) for the normal/Gaussian, \((\text{items}, \text{lnorm}, \text{log_mean}, \text{log_sd})\) for log-normal, \((\text{items}, \text{beta}, \text{alpha}, \text{beta})\) for beta, and
for the beta distribution after applying the function \texttt{plogis} to the input value (note, this is specifically for applying a beta prior to the lower-bound parameters in 3/4PL models)

LBOUND A bracketed, comma separate list specifying lower bounds for estimated parameters (used in optimizers such as \texttt{L-BFGS-B} and \texttt{nlminb}). The input format is \texttt{LBOUND = (items,...,parameterName,value)}. For example, in a single group 10-item dichotomous tests, using the 3PL model and setting lower bounds for the 'g' parameters for the first 5 items to 0.2 is accomplished with \texttt{LBOUND = (1-5,g,0.2)}

UBOUND same as LBOUND, but specifying upper bounds in estimated parameters

START A bracketed, comma separate list specifying the starting values for individual parameters. The input is of the form \texttt{(items,...,parameterName,value)}. For instance, setting the 10th and 12th to 15th item slope parameters (a1) to 1.0 is specified with \texttt{START = (10,12-15,a1,1.0)}

For more hands on control of the starting values pass the argument \texttt{par$1 = 'values'} through whatever estimation function is being used

FIXED A bracketed, comma separate list specifying which parameters should be fixed at their starting values (i.e., not freely estimated). The input is of the form \texttt{(items,...,parameterName)}. For instance, fixing the 10th and 12th to 15th item slope parameters (a1) is accomplished with \texttt{FIXED = (10,12-15,a1)}

For more hands on control of the estimated values pass the argument \texttt{par$1 = 'values'} through whatever estimation function is being used

FREE Equivalent to the \texttt{FIXED} input, except that parameters are freely estimated instead of fixed at their starting value

NEXPLORE Number of exploratory factors to extract. Usually this is not required because passing a numeric value to the \texttt{model} argument in the estimation function will generate an exploratory factor analysis model, however if different start values, priors, lower and upper bounds, etc, are desired then this input can be used

Value

Returns a model specification object to be used in \texttt{mirt}, \texttt{bfactor}, \texttt{multipleGroup}, or \texttt{mixedmirt}

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com> and Alexander Robitzsch

References

Examples

```r
## Not run:

# interactively through the console (not run)
```
#model <- mirt.model()
F1 = 1,2,3,4-10
F2 = 10-20
(F1*F2) = 1,2,3,4-10
COV = F1*F2

Or alternatively with a string input
s <- 'F1 = 1,2,3,4-10
F2 = 10-20
(F1*F2) = 1,2,3,4-10
COV = F1*F2'
model <- mirt.model(s)

strings can also be passed to the estimation functions directly,
which silently calls mirt.model(). E.g., using the string above:
mod <- mirt(data, s)

#Q-matrix specification
Q <- matrix(c(1,1,0,0,0,0,0,0,0,1,1,1), ncol=2, dimnames = list(NULL, c('Factor1', 'Factor2')))
COV <- matrix(c(FALSE, TRUE, TRUE, FALSE), 2)
model <- mirt.model(Q, COV=COV)

constrain various items slopes and all intercepts in single group model to be equal,
and use a log-normal prior for all the slopes
s <- 'F = 1-10
 CONSTRAIN = (1-3, 5, 6, a1), (1-10, d)
 PRIOR = (1-10, a1, lnorm, .2, .2)'
model <- mirt.model(s)

constrain various items slopes and intercepts across groups for use in multipleGroup(),
and constrain first two slopes within 'group1' to be equal
s <- 'F = 1-10
 CONSTRAIN = (1-2, a1)
 CONSTRAINB = (1-3, 5, 6, a1), (1-10, d)'
model <- mirt.model(s)

specify model using raw item names
data(data.read, package = 'sirt')
dat <- data.read

syntax with variable names
mirtsyn2 <- "
 F1 = A1,B2,B3,C4
 F2 = A1-A4,C2,C4
 MEAN = F1
 COV = F1+F1, F1+F2
 CONSTRAIN=(A2-A4,a2),(A3,C2,d)
 PRIOR = (C3,A2-A4,a2,lnorm, .2, .2),(B3,d,norm,0,.0001)"

create a mirt model
mirtCluster <- mirt.model(mirtsyn2, itemnames=dat)
or equivalently:
mirtmodel <- mirt.model(mirtsyn2, itemnames=colnames(dat))

mod <- mirt(dat, mirtmodel)

End(Not run)

mirtCluster

Define a parallel cluster object to be used in internal functions

Description

This function defines an object that is placed in a relevant internal environment defined in mirt. Internal functions such as calcLogLik, fscores, etc, will utilize this object automatically to capitalize on parallel processing architecture. The object defined is a call from `parallel::makeCluster()`. Note that if you are defining other parallel objects (for simulation designs, for example) it is not recommended to define a `mirtCluster`.

Usage

```r
mirtCluster(spec, omp_threads, remove = FALSE, ...)
```

Arguments

- `spec`: input that is passed to `parallel::makeCluster()`. If no input is given the maximum number of available local cores will be used.
- `omp_threads`: number of OpenMP threads to use (currently applies to E-step computations only). Not used when argument input is missing.
- `remove`: logical; remove previously defined `mirtCluster()`?
- `...`: additional arguments to pass to `parallel::makeCluster`

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

```r
## Not run:

# make 4 cores available for parallel computing
mirtCluster(4)

# stop and remove cores
mirtCluster(remove = TRUE)

# create 3 core architecture in R, and 4 thread architecture with OpenMP
mirtCluster(spec = 3, omp_threads = 4)

## End(Not run)
```

MixedClass-class

Class "MixedClass"

Description

Defines the object returned from `mixedmirt`.

Slots

- **Call**: function call
- **Data**: list of data, sometimes in different forms
- **Options**: list of estimation options
- **Fit**: a list of fit information
- **Model**: a list of model-based information
- **ParObjects**: a list of the S4 objects used during estimation
- **OptimInfo**: a list of arguments from the optimization process
- **Internals**: a list of internal arguments for secondary computations (inspecting this object is generally not required)
- **vcov**: a matrix represented the asymptotic covariance matrix of the parameter estimates
- **time**: a data.frame indicating the breakdown of computation times in seconds

Methods

- `coef` signature(object = "MixedClass")
- `print` signature(x = "MixedClass")
- `residuals` signature(object = "MixedClass")
- `show` signature(object = "MixedClass")
- `summary` signature(object = "MixedClass")
- `logLik` signature(object = "MixedClass")
- `anova` signature(object = "MixedClass")
Author(s)
Phil Chalmers <philip.chalmers@gmail.com>

References

mixedmirt

Mixed effects modeling for MIRT models

Description
mixedmirt fits MIRT models using FIML estimation to dichotomous and polytomous IRT models conditional on fixed and random effect of person and item level covariates. This can also be understood as 'explanatory IRT' if only fixed effects are modeled, or multilevel/mixed IRT if random and fixed effects are included. The method uses the MH-RM algorithm exclusively. Additionally, computation of the log-likelihood can be sped up by using parallel estimation via mirtCluster.

Usage
```
mixedmirt(
data,  
covdata = NULL,  
model,  
fixed = ~1,  
random = NULL,  
itemtype = "Rasch",  
lr.fixed = ~1,  
lr.random = NULL,  
itemdesign = NULL,  
constrain = NULL,  
pars = NULL,  
return.design = FALSE,  
SE = TRUE,  
internal_constraints = TRUE,  
technical = list(SEtol = 1e-04),  
...  
)
```

Arguments
```
data a matrix or data.frame that consists of numerically ordered data, with missing data coded as NA
```
mixedmirt

covdata a data frame that consists of the nrow(data) by K 'person level' fixed and random predictors. If missing data are present in this object then the observations from covdata and data will be removed row-wise via the rowSums(is.na(covdata)) > 0

model an object returned from, or a string to be passed to, mirt.model() to declare how the IRT model is to be estimated. See mirt.model for more details

fixed a right sided R formula for specifying the fixed effect (aka 'explanatory') predictors from covdata and itemdesign. To estimate the intercepts for each item the keyword items is reserved and automatically added to the itemdesign input. If any polytomous items are being model the items argument is not valid since all intercept parameters are freely estimated and identified with the parameterizations found in mirt, and the first column in the fixed design matrix (commonly the intercept or a reference group) is omitted

random a right sided formula or list of formulas containing crossed random effects of the form v1 + ... v_n | G, where G is the grouping variable and v_n are random numeric predictors within each group. If no intercept value is specified then by default the correlations between the v's and G are estimated, but can be suppressed by including the ~ -1 + ... or 0 constant. G may contain interaction terms, such as group:items to include cross or person-level interactions effects

itemtype same as itemtype in mirt, except when the fixed or random inputs are used does not support the following item types: c('PC2PL', 'PC3PL', '2PLNRM', '3PLNRM', '3PLuNRM', '4PLNRM')

lr.fixed an R formula (or list of formulas) to specify regression effects in the latent variables from the variables in covdata. This is used to construct models such as the so-called 'latent regression model' to explain person-level ability/trait differences. If a named list of formulas is supplied (where the names correspond to the latent trait names in model) then specific regression effects can be estimated for each factor. Supplying a single formula will estimate the regression parameters for all latent traits by default.

lr.random a list of random effect terms for modeling variability in the latent trait scores, where the syntax uses the same style as in the random argument. Useful for building so-called 'multilevel IRT' models which are non-Rasch (multilevel Rasch models do not technically require these because they can be built using the fixed and random inputs alone)

itemdesign a data.frame object used to create a design matrix for the items, where each nrow(itemdesign) == nitems and the number of columns is equal to the number of fixed effect predictors (i.e., item intercepts). By default an items variable is reserved for modeling the item intercept parameters

constrain a list indicating parameter equality constrains. See mirt for more detail

pars used for parameter starting values. See mirt for more detail

return.design logical; return the design matrices before they have (potentially) been reassigned?

SE logical; compute the standard errors by approximating the information matrix using the MHRM algorithm? Default is TRUE
internal_constraints

logical: use the internally defined constraints for constraining effects across persons and items? Default is TRUE. Setting this to FALSE runs the risk of under-identification

technical

the technical list passed to the MH-RM estimation engine, with the SEtol default increased to .0001. Additionally, the argument RANDSTART is available to indicate at which iteration (during the burn-in stage) the additional random effect variables should begin to be approximated (i.e., elements in lr.random and random). The default for RANDSTART is to start at iteration 100, and when random effects are included the default number of burn-in iterations is increased from 150 to 200. See mirt for further details

additional arguments to be passed to the MH-RM estimation engine. See mirt for more details and examples

Details

For dichotomous response models, mixedmirt follows the general form

\[
P(x = 1 | \theta, \psi) = g + \frac{(u - g)}{1 + \exp(-1 * [\theta a + X \beta + Z \delta])}
\]

where X is a design matrix with associated \(\beta \) fixed effect intercept coefficients, and Z is a design matrix with associated \(\delta \) random effects for the intercepts. For simplicity and easier interpretation, the unique item intercept values typically found in \(X \beta \) are extracted and reassigned within mirt’s ‘intercept’ parameters (e.g., ‘d’). To observe how the design matrices are structured prior to reassignment and estimation pass the argument return.design = TRUE.

Polytomous IRT models follow a similar format except the item intercepts are automatically estimated internally, rendering the items argument in the fixed formula redundant and therefore must be omitted from the specification. If there are a mixture of dichotomous and polytomous items the intercepts for the dichotomous models are also estimated for consistency.

The decomposition of the \(\theta \) parameters is also possible to form latent regression and multilevel IRT models by using the lr.fixed and lr.random inputs. These effects decompose \(\theta \) such that

\[
\theta = V \Gamma + W \zeta + \epsilon
\]

where V and W are fixed and random effects design matrices for the associated coefficients.

To simulate maximum a posteriori estimates for the random effect terms use the randef function.

Value

function returns an object of class MixedClass (MixedClass-class).

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>
References

See Also

mirt, randef, fixef, boot.mirt

Examples

```r
## Not run:
#make some data
set.seed(1234)
N <- 750
a <- matrix(rlnorm(10,.3,1),10,1)
d <- matrix(rnorm(10), 10)
Theta <- matrix(sort(rnorm(N)))
pseudoIQ <- Theta * 5 + 100 + rnorm(N, 0, 5)
pseudoIQ <- (pseudoIQ - mean(pseudoIQ))/10 #rescale variable for numerical stability
group <- factor(rep(c("Var_G1","Var_G2","Var_G3"), each = N/3))
data <- simdata(a,d,N, itemtype = rep("2PL",10),Theta=Theta)
covdata <- data.frame(group, pseudoIQ)
#use parallel computing
mirtCluster()

#specify IRT model
model <- 'Theta = 1-10'

#model with no person predictors
mod0 <- mirt(data, model, itemtype = 'Rasch')

#group as a fixed effect predictor (aka, uniform dif)
mod1 <- mixedmirt(data, covdata, model, fixed = - 0 + group + items)
anova(mod0, mod1)
summary(mod1)
coef(mod1)

#same model as above in lme4
wide <- data.frame(id=1:nrow(data),data,covdata)
long <- reshape2::melt(wide, id.vars = c('id', 'group', 'pseudoIQ'))
library(lme4)
lmod0 <- glmer(value ~ 0 + variable + (1|id), long, family = binomial)
lmod1 <- glmer(value ~ 0 + group + variable + (1|id), long, family = binomial)
anova(lmod0, lmod1)

#model using 2PL items instead of Rasch
mod1b <- mixedmirt(data, covdata, model, fixed = - 0 + group + items, itemtype = '2PL')
```
anova(mod1, mod1b) #better with 2PL models using all criteria (as expected, given simdata pars)

#continuous predictor with group
mod2 <- mixedmirt(data, covdata, model, fixed = ~ 0 + group + items + pseudoIQ)
summary(mod2)
anova(mod1b, mod2)

#view fixed design matrix with and without unique item level intercepts
withint <- mixedmirt(data, covdata, model, fixed = ~ 0 + items + group, return.design = TRUE)
withoutint <- mixedmirt(data, covdata, model, fixed = ~ 0 + group, return.design = TRUE)

#notice that in result above, the intercepts 'items1 to items 10' were reassigned to 'd'
head(withint$X)
tail(withint$X)
head(withoutint$X) #no intercepts design here to be reassigned into item intercepts
tail(withoutint$X)

###
random effects
#make the number of groups much larger
covdata$group <- factor(rep(paste0('G',1:50), each = N/50))

#random groups
rmod1 <- mixedmirt(data, covdata, 1, fixed = ~ 0 + items, random = ~ 1|group)
summary(rmod1)
coef(rmod1)

#random groups and random items
rmod2 <- mixedmirt(data, covdata, 1, random = list(~ 1|group, ~ 1|items))
summary(rmod2)
eff <- randef(rmod2) #estimate random effects

#random slopes with fixed intercepts (suppressed correlation)
rmod3 <- mixedmirt(data, covdata, 1, fixed = ~ 0 + items, random = ~ -1 + pseudoIQ|group)
summary(rmod3)
eff <- randef(rmod3)
str(eff)

###
##LLTM, and 2PL version of LLTM
#random intercepts
data(SAT12)
data <- key2binary(SAT12, key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
model <- 'Theta = 1-32'

Suppose that the first 16 items were suspected to be easier than the last 16 items,
and we wish to test this item structure hypothesis (more intercept designs are possible
by including more columns).
itemdesign <- data.frame(itemorder = factor(c(rep('easier', 16), rep('harder', 16))))

#notice that the 'fixed = ~ ... + items' argument is omitted
LLTM <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemdesign = itemdesign, SE = TRUE) # SE argument ensures that the information matrix is computed accurately
mixedmirt

summary(LLTM)
coef(LLTM)
wald(LLTM)
L <- matrix(c(-1, 1, 0), 1)
wald(LLTM, L) # first half different from second

compare to items with estimated slopes (2PL)
twoPL <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemtype = '2PL',
 itemdesign = itemdesign)
twoPL not mixing too well (AR should be between .2 and .5), decrease MHcand
twoPL <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemtype = '2PL',
 itemdesign = itemdesign, technical = list(MHcand = 0.8))
anova(twoPL, LLTM) # much better fit
summary(twoPL)
coef(twoPL)

L <- matrix(0, 1, 34)
L[1, 1] <- 1
L[1, 2] <- -1
wald(twoPL, L) # n.s., which is the correct conclusion. Rasch approach gave wrong inference

LLTM with item error term
LLTMwithError <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, random = ~ 1|items,
 itemdesign = itemdesign)
summary(LLTMwithError)
large item level variance after itemorder is regressed; not a great predictor of item difficulty
coef(LLTMwithError)

###
Polytomous example
make an arbitrary group difference
covdat <- data.frame(group = rep(c('m', 'f'), nrow(Science)/2))

partial credit model
mod <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group)
coef(mod)

gpcm to estimate slopes
mod2 <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group,
 itemtype = 'gpcm')
summary(mod2)
anova(mod, mod2)

graded model
mod3 <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group,
 itemtype = 'graded')
coef(mod3)

###
latent regression with Rasch and 2PL models
set.seed(1)
n <- 300
a <- matrix(1, 10)
d <- matrix(rnorm(10))
Theta <- matrix(c(rnorm(n, 0), rnorm(n, 1), rnorm(n, 2)))
covdata <- data.frame(group=rep(c('g1', 'g2', 'g3'), each=n))
dat <- simdata(a, d, N=n*3, Theta=Theta, itemtype = '2PL')

had we known the latent abilities, we could have computed the regression coefs
summary(lm(Theta ~ covdata$group))

but all we have is observed test data. Latent regression helps to recover these coefs
Rasch model approach (and mirt equivalent)
rmod0 <- mirt(dat, 1, 'Rasch') # unconditional

these two models are equivalent
rmod1a <- mirt(dat, 1, 'Rasch', covdata = covdata, formula = ~ group)
rmod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group)
anova(rmod0, rmod1b)
coef(rmod1a, simplify=TRUE)
summary(rmod1b)

2PL, requires different input to allow Theta variance to remain fixed
mod0 <- mirt(dat, 1) # unconditional
mod1a <- mirt(dat, 1, covdata = covdata, formula = ~ group, itemtype = '2PL')
mod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.fixed = ~ group, itemtype = '2PL')
anova(mod0, mod1b)
coef(mod1a)$lr.betas
summary(mod1b)

specifying specific regression effects is accomplished by passing a list of formula
model <- 'F1 = 1-5
 F2 = 6-10'
covdata$contvar <- rnorm(nrow(covdata))
mod2 <- mirt(dat, model, itemtype = 'Rasch', covdata=covdata,
 formula = list(F1 = ~ group + contvar, F2 = ~ group))
coef(mod2)[11:12]
mod2b <- mixedmirt(dat, covdata, model, fixed = ~ 0 + items,
 lr.fixed = list(F1 = ~ group + contvar, F2 = ~ group))
summary(mod2b)

##
Simulated Multilevel Rasch Model

set.seed(1)
N <- 2000
a <- matrix(rep(1,10),10,1)
d <- matrix(rnorm(10))
cluster = 100
random_intercept = rnorm(cluster,0,1)
Theta = numeric()
for (i in 1:cluster)
Theta <- c(Theta, rnorm(N/cluster,0,1) + random_intercept[i])

group = factor(rep(paste0('G',1:cluster), each = N/cluster))
covdata <- data.frame(group)
dat <- simdata(a,d,N, itemtype = rep('2PL',10), Theta=matrix(Theta))

null model
mod1 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, random = ~ 1|group)
summary(mod1)

include level 2 predictor for 'group' variance
covdata$group_pred <- rep(random_intercept, each = N/cluster)
mod2 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group_pred, random = ~ 1|group)

including group means predicts nearly all variability in 'group'
summary(mod2)
anova(mod1, mod2)

can also be fit for Rasch/non-Rasch models with the lr.random input
mod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.random = ~ 1|group)
summary(mod1b)

mod2b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group_pred, lr.random = ~ 1|group)
summary(mod2b)
anova(mod1b, mod2b)

mod3 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.random = ~ 1|group, itemtype = '2PL')
summary(mod3)
anova(mod1b, mod3)

head(cbind(randef(mod3)$group, random_intercept))

End(Not run)

MixtureClass-class

Class "MixtureClass"

Description

Defines the object returned from `multipleGroup` when estimated with mixture distributions.

Slots

- **Call**: function call
- **Data**: list of data, sometimes in different forms
- **Options**: list of estimation options
- **Fit**: a list of fit information
- **Model**: a list of model-based information
ParObjects: a list of the S4 objects used during estimation

OptimInfo: a list of arguments from the optimization process

Internals: a list of internal arguments for secondary computations (inspecting this object is generally not required)

vcov: a matrix represented the asymptotic covariance matrix of the parameter estimates

time: a data.frame indicating the breakdown of computation times in seconds

Methods

c coef signature(object = "MixtureClass")

print signature(x = "MixtureClass")

show signature(object = "MixtureClass")

anova signature(object = "MixtureClass")

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

mod2values Convert an estimated mirt model to a data.frame

Description

Given an estimated model from any of mirt’s model fitting functions this function will convert the model parameters into the design data frame of starting values and other parameter characteristics (similar to using the pars = 'values' for obtaining starting values).

Usage

mod2values(x)

Arguments

x an estimated model x from the mirt package

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>
multipleGroup

References

See Also

extract.mirt

Examples

```r
## Not run:
dat <- expand.table(LSAT7)
mod <- mirt(dat, 1)
values <- mod2values(mod)
values

#use the converted values as starting values in a new model, and reduce TOL
mod2 <- mirt(dat, 1, pars = values, TOL=1e-5)

## End(Not run)
```

multipleGroup
Multiple Group Estimation

Description

multipleGroup performs a full-information maximum-likelihood multiple group analysis for any combination of dichotomous and polytomous data under the item response theory paradigm using either Cai’s (2010) Metropolis-Hastings Robbins-Monro (MHRM) algorithm or with an EM algorithm approach. This function may be used for detecting differential item functioning (DIF), though the DIF function may provide a more convenient approach. If the grouping variable is not specified then the dentype input can be modified to fit mixture models to estimate any latent group components.

Usage

```r
multipleGroup(
  data,
  model,
  group,
  invariance = "",
  method = "EM",
  dentype = "Gaussian",
  ...
)
```

Arguments

data: a matrix or data.frame that consists of numerically ordered data, with missing data coded as NA.

model: string to be passed to, or a model object returned from, mirt.model declaring how the global model is to be estimated (useful to apply constraints here).

group: a character or factor vector indicating group membership. If a character vector is supplied this will be automatically transformed into a factor variable. As well, the first level of the (factorized) grouping variable will be treated as the "reference" group.

invariance: a character vector containing the following possible options:

- 'free_mean' or 'free_means' freely estimate all latent means in all focal groups (reference group constrained to a vector of 0’s).
- 'free_var', 'free_vars', 'free_variance', or 'free_variances' freely estimate all latent variances in focal groups (reference group variances all constrained to 1).
- 'slopes' to constrain all the slopes to be equal across all groups.
- 'intercepts' to constrain all the intercepts to be equal across all groups, note for nominal models this also includes the category specific slope parameters.

Additionally, specifying specific item name bundles (from colnames(data)) will constrain all freely estimated parameters in each item to be equal across groups. This is useful for selecting ‘anchor’ items for vertical and horizontal scaling, and for detecting differential item functioning (DIF) across groups.

method: a character object that is either 'EM', 'QMC EM', or 'MHRM' (default is 'EM'). See mirt for details.

dentype: type of density form to use for the latent trait parameters. Current options include all of the methods described in mirt, as well as:

- 'mixture-#' estimates mixtures of Gaussian distributions, where the # placeholder represents the number of potential grouping variables (e.g., 'mixture-3' will estimate 3 underlying classes). Each class is assigned the group name MIXTURE_#, where # is the class number. Note that internally the mixture coefficients are stored as log values where the first mixture group coefficient is fixed at 0.

... additional arguments to be passed to the estimation engine. See mirt for details and examples.

Details

By default the estimation in multipleGroup assumes that the models are maximally independent, and therefore could initially be performed by sub-setting the data and running identical models with mirt and aggregating the results (e.g., log-likelihood). However, constrains may be automatically imposed across groups by invoking various invariance keywords. Users may also supply a list of parameter equality constraints to by constrain argument, of define equality constraints using the mirt.model syntax (recommended).
Value

function returns an object of class MultipleGroupClass (MultipleGroupClass-class).

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

See Also

mirt, DIF, extract.group, DRF

Examples

```r
## Not run:
# single factor
set.seed(12345)
a <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d <- matrix(rnorm(15,0,.7),ncol=1)
itemtype <- rep('2PL', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5))
dat <- rbind(dataset1, dataset2)
group <- c(rep('D1', N), rep('D2', N))
mod_configural <- multipleGroup(dat, 1, group = group) # completely separate analyses
# limited information fit statistics
M2(mod_configural)
mod_metric <- multipleGroup(dat, 1, group = group, invariance=c('slopes')) # equal slopes # equal intercepts, free variance and means
mod_scalar2 <- multipleGroup(dat, 1, group = group,
                              invariance=c('slopes', 'intercepts', 'free_var', 'free_means'))
mod_scalar1 <- multipleGroup(dat, 1, group = group, # fixed means
                              invariance=c('slopes', 'intercepts', 'free_var'))
mod_fullconstrain <- multipleGroup(dat, 1, group = group,
                                   invariance=c('slopes', 'intercepts'))
extract.mirt(mod_fullconstrain, 'time') # time of estimation components
# optionally use Newton-Raphson for (generally) faster convergence in the M-step's
mod_fullconstrain <- multipleGroup(dat, 1, group = group, optimizer = 'NR',
                                   invariance=c('slopes', 'intercepts'))
extract.mirt(mod_fullconstrain, 'time') # time of estimation components
summary(mod_scalar2)
coef(mod_scalar2, simplify=TRUE)
```
multipleGroup

residuals(mod_scalar2)
plot(mod_configural)
plot(mod_configural, type = 'info')
plot(mod_configural, type = 'trace')
plot(mod_configural, type = 'trace', which.items = 1:4)
itemplot(mod_configural, 2)
itemplot(mod_configural, 2, type = 'RE')

anova(mod_metric, mod_configural) #equal slopes only
anova(mod_scalar2, mod_metric) #equal intercepts, free variance and mean
anova(mod_scalar1, mod_scalar2) #fix mean
anova(mod_fullconstrain, mod_scalar1) #fix variance

test whether first 6 slopes should be equal across groups
values <- multipleGroup(dat, 1, group = group, pars = 'values')
values
constrain <- list(c(1, 63), c(5, 67), c(9, 71), c(13, 75), c(17, 79), c(21, 83))
equalslopes <- multipleGroup(dat, 1, group = group, constrain = constrain)
anova(equalslopes, mod_configural)

#same as above, but using mirt.model syntax
newmodel <- 'F = 1-15
 CONSTRAINB = (1-6, a1)'
equalslopes <- multipleGroup(dat, newmodel, group = group)
coef(equalslopes, simplify=TRUE)

#######
vertical scaling (i.e., equating when groups answer items others do not)
dat2 <- dat
head(dat2)
tail(dat2)

items with missing responses need to be constrained across groups for identification
nms <- colnames(dat2)
mod <- multipleGroup(dat2, 1, group, invariance = nms[c(1:2, 14:15)])

this will throw an error without proper constraints (SEs cannot be computed either)
mod <- multipleGroup(dat2, 1, group)

model still does not have anchors, therefore need to add a few (here use items 3-5)
mod_anchor <- multipleGroup(dat2, 1, group,
invariance = c(nms[c(1:5, 14:15)], 'free_means', 'free_var'))
coef(mod_anchor, simplify=TRUE)

check if identified by computing information matrix
mod_anchor <- multipleGroup(dat2, 1, group, pars = mod2values(mod_anchor), TOL=NaN, SE=TRUE,
invariance = c(nms[c(1:5, 14:15)], 'free_means', 'free_var'))
mod_anchor
coef(mod_anchor)
coef(mod_anchor, printSE=TRUE)
DIF test for each item (using all other items as anchors)
itemnames <- colnames(dat)
refmodel <- multipleGroup(dat, 1, group = group, SE=TRUE,
invariance=c('free_means', 'free_var', itemnames))

loop over items (in practice, run in parallel to increase speed). May be better to use ?DIF
estmodels <- vector('list', ncol(dat))
for(i in 1:ncol(dat))
estmodels[[i]] <- multipleGroup(dat, 1, group = group, verbose = FALSE,
invariance=c('free_means', 'free_var', itemnames[-i]))

(anovas <- lapply(estmodels, anova, object2=refmodel, verbose=FALSE))

family-wise error control
p <- do.call(rbind, lapply(anovas, function(x) x[, 'p']))
p.adjust(p, method = 'BH')

same as above, except only test if slopes vary (1 df)
constrain all intercepts
estmodels <- vector('list', ncol(dat))
for(i in 1:ncol(dat))
estmodels[[i]] <- multipleGroup(dat, 1, group = group, verbose = FALSE,
invariance=c('free_means', 'free_var', 'intercepts', itemnames[-i]))

(anovas <- lapply(estmodels, anova, object2=refmodel, verbose=FALSE))

quickly test with Wald test using DIF()
mod_configural2 <- multipleGroup(dat, 1, group = group, SE=TRUE)
DIF(mod_configural2, which.par = c('a1', 'd'), Wald=TRUE, p.adjust = 'fdr')

Three group model where the latent variable parameters are constrained to
be equal in the focal groups
set.seed(12345)
a <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d <- matrix(rnorm(15,0,.7),ncol=1)
ititemtype <- rep('2PL', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5))
dataset3 <- simdata(a, d, N, itemtype, mu = .1, sigma = matrix(1.5))
dat <- rbind(dataset1, dataset2, dataset3)
group <- rep(c('D1', 'D2', 'D3'), each=N)
model <- ~ F1 ~ 1
 FREE[D2, D3] = (GROUP, MEAN_1), (GROUP, COV_11)
 CONSTRAINB[D2, D3] = (GROUP, MEAN_1), (GROUP, COV_11)
mod <- multipleGroup(dat, model, group = group, invariance = colnames(dat))
coef(mod, simplify=TRUE)

#multiple factors
a <- matrix(c(abs(rnorm(5,1,.3)), rep(0,15),abs(rnorm(5,1,.3)),
 rep(0,15),abs(rnorm(5,1,.3))), 15, 3)
d <- matrix(rnorm(15,0,.7),ncol=1)
mu <- c(-.4, -.7, .1)
sigma <- matrix(c(1.21,.297,1.232,.297,.81,.252,1.232,.252,1.96),3,3)
itemtype <- rep('2PL', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a, d, N, itemtype, mu = mu, sigma = sigma)
dat <- rbind(dataset1, dataset2)
group <- c(rep('D1', N), rep('D2', N))

#group models
model <- '
 F1 = 1-5
 F2 = 6-10
 F3 = 11-15'

#define mirt cluster to use parallel architecture
mirtCluster()

#EM approach (not as accurate with 3 factors, but generally good for quick model comparisons)
mod_configural <- multipleGroup(dat, model, group = group) #completely separate analyses
mod_metric <- multipleGroup(dat, model, group = group, invariance=c('slopes')) #equal slopes
mod_fullconstrain <- multipleGroup(dat, model, group = group, #equal means, slopes, intercepts
 invariance=c('slopes', 'intercepts'))
anova(mod_metric, mod_configural)
anova(mod_fullconstrain, mod_metric)

#same as above, but with MHRM (generally more accurate with 3+ factors, but slower)
mod_configural <- multipleGroup(dat, model, group = group, method = 'MHRM')
mod_metric <- multipleGroup(dat, model, group = group, invariance=c('slopes'), method = 'MHRM')
mod_fullconstrain <- multipleGroup(dat, model, group = group, method = 'MHRM',
 invariance=c('slopes', 'intercepts'))
anova(mod_metric, mod_configural)
anova(mod_fullconstrain, mod_metric)

#polytomous item example
set.seed(12345)
a <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d <- matrix(rnorm(15,0,.7),ncol=1)
multipleGroup

\[d \leftarrow \text{cbind}(d, d-1, d-2) \]
\[\text{itemtype} \leftarrow \text{rep('graded', nrow(a))} \]
\[N \leftarrow 1000 \]
\[\text{dataset1} \leftarrow \text{simdata}(a, d, N, \text{itemtype}) \]
\[\text{dataset2} \leftarrow \text{simdata}(a, d, N, \text{itemtype}, \mu = .1, \sigma = \text{matrix(1.5)}) \]
\[\text{dat} \leftarrow \text{rbind(dataset1, dataset2)} \]
\[\text{group} \leftarrow \text{c(rep('D1', N), rep('D2', N))} \]
\[\text{model} \leftarrow 'F1 = 1-15' \]
\[\text{mod_configural} \leftarrow \text{multipleGroup(dat, model, group = group)} \]
\[\text{plot(mod_configural)} \]
\[\text{plot(mod_configural, type = 'SE')} \]
\[\text{itemplot(mod_configural, 1)} \]
\[\text{itemplot(mod_configural, 1, type = 'info')} \]
\[\text{plot(mod_configural, type = 'trace')} # messy, score function typically better \]
\[\text{plot(mod_configural, type = 'itemscore')} \]
\[\text{fs} \leftarrow \text{fscores(mod_configural, full.scores = FALSE)} \]
\[\text{head(fs['D1'])} \]
\[\text{fscores(mod_configural, method = 'EAPsum', full.scores = FALSE)} \]

constrain slopes within each group to be equal (but not across groups)
\[\text{model2} \leftarrow 'F1 = 1-15' \]
\[\text{CONSTRAIN} = (1-15, a1)' \]
\[\text{mod_configural2} \leftarrow \text{multipleGroup(dat, model2, group = group)} \]
\[\text{plot(mod_configural2, type = 'SE')} \]
\[\text{plot(mod_configural2, type = 'RE')} \]
\[\text{itemplot(mod_configural2, 10)} \]

############
empirical histogram example (normal and bimodal groups)
\[\text{set.seed(1234)} \]
\[\text{a} \leftarrow \text{matrix(rlnorm(50, .2, .2))} \]
\[\text{d} \leftarrow \text{matrix(rnorm(50))} \]
\[\text{ThetaNormal} \leftarrow \text{matrix(rnorm(2000))} \]
\[\text{ThetaBimodal} \leftarrow \text{scale(matrix(c(rnorm(1000, -2), rnorm(1000,2))))} #bimodal \]
\[\text{Theta} \leftarrow \text{rbind(ThetaNormal, ThetaBimodal)} \]
\[\text{dat} \leftarrow \text{simdata(a, d, 4000, \text{itemtype} = '2PL', Theta=Theta)} \]
\[\text{group} \leftarrow \text{c(rep('G1', 2000), rep('G2', 2000))} \]
\[\text{EH} \leftarrow \text{multipleGroup(dat, 1, group=group, dentity="empiricalhist", invariance = colnames(dat))} \]
\[\text{coef(EH, simplify=TRUE)} \]
\[\text{plot(EH, type = 'empiricalhist', npts = 60)} \]

#DIF test for item 1
\[\text{EH1} \leftarrow \text{multipleGroup(dat, 1, group=group, dentity="empiricalhist", invariance = colnames(dat)[-1])} \]
\[\text{anova(EH, EH1)} \]

#--------------------------------
Mixture model (no prior group variable specified)
\[\text{set.seed(12345)} \]
\[\text{nitems} \leftarrow 20 \]
```
a1 <- matrix(.75, ncol=1, nrow=nitems)
a2 <- matrix(1.25, ncol=1, nrow=nitems)
d1 <- matrix(rnorm(nitems,0,1),ncol=1)
d2 <- matrix(rnorm(nitems,0,1),ncol=1)
itemtype <- rep("2PL", nrow(a1))
N1 <- 500
N2 <- N1*2 # second class twice as large

dataset1 <- simdata(a1, d1, N1, itemtype)
dataset2 <- simdata(a2, d2, N2, itemtype)
dat <- rbind(dataset1, dataset2)
# group <- c(rep("D1", N1), rep("D2", N2))
# Mixture Rasch model (Rost, 1990)
models <- 'F1 = 1-20
       CONSTR = (1-20, a1)'
mod_mix <- multipleGroup(dat, models, dentype = 'mixture-2', GenRandomPars = TRUE)
coef(mod_mix, simplify=TRUE)
summary(mod_mix)
plot(mod_mix)
plot(mod_mix, type = 'trace')
itemplot(mod_mix, 1, type = 'info')

head(fscores(mod_mix)) # theta estimates
head(fscores(mod_mix, method = 'classify')) # classification probability
itemfit(mod_mix)

# Mixture 2PL model
mod_mix2 <- multipleGroup(dat, 1, dentype = 'mixture-2', GenRandomPars = TRUE)
anova(mod_mix2, mod_mix)
coef(mod_mix2, simplify=TRUE)
itemfit(mod_mix2)

# Zero-inflated 2PL IRT model
model <- "F = 1-20
 START [MIXTURE_1] = (GROUP, MEAN_1, -100), (GROUP, COV_11, .00001),
 (1-20, a1, 1.0), (1-20, d, 0.0)
 FIXED [MIXTURE_1] = (GROUP, MEAN_1), (GROUP, COV_11),
 (1-20, a1), (1-20, d)"
zip <- multipleGroup(dat, model, dentype = 'mixture-2')
coef(zip, simplify=TRUE)

## End(Not run)
```
numerical_deriv

Description

Defines the object returned from `multipleGroup`.

Slots

- **Call**: function call
- **Data**: list of data, sometimes in different forms
- **Options**: list of estimation options
- **Fit**: a list of fit information
- **Model**: a list of model-based information
- **ParObjects**: a list of the S4 objects used during estimation
- **OptimInfo**: a list of arguments from the optimization process
- **Internals**: a list of internal arguments for secondary computations (inspecting this object is generally not required)
- **vcov**: a matrix represented the asymptotic covariance matrix of the parameter estimates
- **time**: a data.frame indicating the breakdown of computation times in seconds

Methods

- `coef` signature(object = "MultipleGroupClass")
- `print` signature(x = "MultipleGroupClass")
- `show` signature(object = "MultipleGroupClass")
- `anova` signature(object = "MultipleGroupClass")

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

numerical_deriv

Compute numerical derivatives

Description

Compute numerical derivatives using forward/backward difference, central difference, or Richardson extrapolation.
Usage

numerical_deriv(
 f,
 par,
 ..., delta = 1e-05,
 gradient = TRUE,
 type = "Richardson"
)

Arguments

 f the objective function being evaluated
 par a vector of parameters
 ... additional arguments to be passed to f
 delta the term used to perturb the f function. Default is 1e-5
 gradient logical; compute the gradient terms? If FALSE then the Hessian is computed instead
 type type of difference to compute. Can be either 'forward' for the forward difference, 'central' for the central difference, or 'Richardson' for the Richardson extrapolation (default). Backward difference is achieved by supplying a negative delta value with 'forward'. When type = 'Richardson', the default value of delta is increased to delta * 1000 for the Hessian and delta * 10 for the gradient to provide a reasonable perturbation starting location (each delta is halved at each iteration).

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

Examples

```r
## Not run:
f <- function(x) 3*x[1]^3 - 4*x[2]^2
par <- c(3,8)

# grad = 9 * x^2 , -8 * y
(actual <- c(9 * par[1]^2, -8 * par[2]))
numerical_deriv(f, par, type = 'forward')
numerical_deriv(f, par, type = 'central')
numerical_deriv(f, par, type = 'Richardson') # default

# Hessian = h11 -> 18 * x, h22 -> -8, h12 -> h21 -> 0
(actual <- matrix(c(18 * par[1], 0, 0, -8), 2, 2))
numerical_deriv(f, par, type = 'forward', gradient = FALSE)
numerical_deriv(f, par, type = 'central', gradient = FALSE)
numerical_deriv(f, par, type = 'Richardson', gradient = FALSE) # default
```
personfit

Person fit statistics

Description

personfit calculates the Zh values from Drasgow, Levine and Williams (1985) for unidimensional and multidimensional models, as well as the infit and outfit statistics. The returned object is a data.frame consisting either of the tabulated data or full data with the statistics appended to the rightmost columns.

Usage

personfit(x, method = "EAP", Theta = NULL, stats.only = TRUE, ...)

Arguments

x
 a computed model object of class SingleGroupClass or MultipleGroupClass
method
 type of factor score estimation method. See fscores for more detail
Theta
 a matrix of factor scores used for statistics that require empirical estimates. If supplied, arguments typically passed to fscores() will be ignored and these values will be used instead
stats.only
 logical; return only the person fit statistics without their associated response pattern?
... additional arguments to be passed to fscores()

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

See Also

itemfit
Examples

```r
## Not run:

# make some data
set.seed(1)
a <- matrix(rlnorm(20), ncol=1)
d <- matrix(rnorm(20), ncol=1)
items <- rep('2PL', 20)
data <- simdata(a, d, 2000, items)
x <- mirt(data, 1)
fit <- personfit(x)
head(fit)

# using precomputed Theta
Theta <- fscores(x, method = 'MAP', full.scores = TRUE)
head(personfit(x, Theta=Theta))

# multiple group Rasch model example
set.seed(12345)
a <- matrix(rep(1, 15), ncol=1)
d <- matrix(rnorm(15, 0, .7), ncol=1)
itemtype <- rep('dich', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a, d, N, itemtype, sigma = matrix(1.5))
dat <- rbind(dataset1, dataset2)
group <- c(rep('D1', N), rep('D2', N))
models <- 'F1 = 1-15'
mod_Rasch <- multipleGroup(dat, models, itemtype = 'Rasch', group = group)
coef(mod_Rasch, simplify=TRUE)
pf <- personfit(mod_Rasch, method='MAP')
head(pf)

## End(Not run)
```

PLCI.mirt

Compute profiled-likelihood (or posterior) confidence intervals

Description

Computes profiled-likelihood based confidence intervals. Supports the inclusion of equality constraints. Object returns the confidence intervals and whether the respective interval could be found.
Usage

```r
PLCI.mirt(
  mod,
  parnum = NULL,
  alpha = 0.05,
  search_bound = TRUE,
  step = 0.5,
  lower = TRUE,
  upper = TRUE,
  inf2val = 30,
  NealeMiller = FALSE,
  ...
)
```

Arguments

- `mod`: a converged mirt model
- `parnum`: a numeric vector indicating which parameters to estimate. Use `mod2values` to determine parameter numbers. If `NULL`, all possible parameters are used
- `alpha`: two-tailed alpha critical level
- `search_bound`: logical; use a fixed grid of values around the ML estimate to determine more suitable optimization bounds? Using this has much better behaviour than setting fixed upper/lower bound values and searching from more extreme ends
- `step`: magnitude of steps used when `search_bound` is `TRUE`. Smaller values create more points to search a suitable bound for (up to the lower bound value visible with `mod2values`). When upper/lower bounds are detected this value will be adjusted accordingly
- `lower`: logical; search for the lower CI?
- `upper`: logical; search for the upper CI?
- `inf2val`: a numeric used to change parameter bounds which are infinity to a finite number. Decreasing this too much may not allow a suitable bound to be located. Default is 30
- `NealeMiller`: logical; use the Neale and Miller 1997 approximation? Default is `FALSE`
- `...`: additional arguments to pass to the estimation functions

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

See Also

boot.mirt

Examples

Not run:
mirtCluster() #use all available cores to estimate CI's in parallel
dat <- expand.table(LSAT7)
mod <- mirt(dat, 1)

result <- PLCI.mirt(mod)
result

model with constraints
mod <- mirt(dat, 'F = 1-5
 CONSTRAIN = (1-5, a1)')

result <- PLCI.mirt(mod)
result

mod2 <- mirt(Science, 1)
result2 <- PLCI.mirt(mod2)
result2

#only estimate CI's slopes
sv <- mod2$values(mod2)
parnum <- sv$parnum[sv$name == 'a1']
result3 <- PLCI.mirt(mod2, parnum)
result3

End(Not run)

plot,MultipleGroupClass,missing-method

Plot various test-implied functions from models

Description

Plot various test implied response functions from models estimated in the mirt package.

Usage

S4 method for signature 'MultipleGroupClass,missing'
plot(
 x,
 y,
 type = "score",
)
npts = 200,
drop2 = TRUE,
degrees = 45,
which.items = 1:extract.mirt(x, "nitems"),
rot = list(xaxis = -70, yaxis = 30, zaxis = 10),
facet_items = TRUE,
theta_lim = c(-6, 6),
par.strip.text = list(cex = 0.7),
par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")),
auto.key = list(space = "right", points = FALSE, lines = TRUE),
...)

S4 method for signature 'SingleGroupClass,missing'
plot(
x,
y,
type = "score",
npts = 200,
drop2 = TRUE,
degrees = 45,
theta_lim = c(-6, 6),
which.items = 1:extract.mirt(x, "nitems"),
MI = 0,
CI = 0.95,
rot = list(xaxis = -70, yaxis = 30, zaxis = 10),
facet_items = TRUE,
main = NULL,
drape = TRUE,
colorkey = TRUE,
ehist.cut = 1e-10,
add.ylab2 = TRUE,
par.strip.text = list(cex = 0.7),
par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col = "black")),
auto.key = list(space = "right", points = FALSE, lines = TRUE),
profile = FALSE,
...)

Arguments

x an object of class SingleGroupClass, MultipleGroupClass, or DiscreteClass

y an arbitrary missing argument required for R CMD check

type type of plot to view. Can be

'info' test information function

'rxx' for the reliability function
'infocontour' for the test information contours
'SE' for the test standard error function
'infotrace' item information traceline plots
'infoSE' a combined test information and standard error plot
'trace' item probability traceline plots
'itemscore' item scoring traceline plots
'score' expected total score surface
'scorecontour' expected total score contour plot

Note that if dentype = 'empiricalhist' was used in estimation then the type 'empiricalhist' also will be available to generate the empirical histogram plot, and if dentype = 'Davidian-#' was used then the type 'Davidian' will also be available to generate the curve estimates at the quadrature nodes used during estimation

npts number of quadrature points to be used for plotting features. Larger values make plots look smoother
drop2 logical; where appropriate, for dichotomous response items drop the lowest category and provide information pertaining only to the second response option?
degrees numeric value ranging from 0 to 90 used in plot to compute angle for information-based plots with respect to the first dimension. If a vector is used then a bubble plot is created with the summed information across the angles specified (e.g., degrees = seq(0,90,by=10))
which.items numeric vector indicating which items to be used when plotting. Default is to use all available items
rot allows rotation of the 3D graphics
facet_items logical; apply grid of plots across items? If FALSE, items will be placed in one plot for each group
theta_lim lower and upper limits of the latent trait (theta) to be evaluated, and is used in conjunction with npts
par.strip.text plotting argument passed to lattice
par.settings plotting argument passed to lattice
auto.key plotting argument passed to lattice
... additional arguments to be passed to lattice
MI a single number indicating how many imputations to draw to form bootstrapped confidence intervals for the selected test statistic. If greater than 0 a plot will be drawn with a shaded region for the interval
CI a number from 0 to 1 indicating the confidence interval to select when MI input is used. Default uses the 95% confidence (CI = .95)
main argument passed to lattice. Default generated automatically
drape logical argument passed to lattice. Default generated automatically
colorkey logical argument passed to lattice. Default generated automatically
ehist.cut a probability value indicating a threshold for excluding cases in empirical histogram plots. Values larger than the default will include more points in the tails of the plot, potentially squishing the 'meat' of the plot to take up less area than visually desired

add.ylab2 logical argument passed to lattice. Default generated automatically

profile logical: provide a profile plot of response probabilities (objects returned from mdirt only)

References

Examples

```r
## Not run:
x <- mirt(Science, 1, SE=TRUE)
plot(x)
plot(x, type = 'info')
plot(x, type = 'infotrace')
plot(x, type = 'infotrace', facet_items = FALSE)
plot(x, type = 'infoSE')
plot(x, type = 'rxx')

# confidence interval plots when information matrix computed
plot(x)
plot(x, MI=100)
plot(x, type='info', MI=100)
plot(x, type='SE', MI=100)
plot(x, type='rxx', MI=100)

# use the directlabels package to put labels on tracelines
library(directlabels)
plt <- plot(x, type = 'trace')
direct.label(plt, 'top.points')

set.seed(1234)
group <- sample(c('g1','g2'), nrow(Science), TRUE)
x2 <- multipleGroup(Science, 1, group)
plot(x2)
plot(x2, type = 'trace')
plot(x2, type = 'trace', which.items = 1:2)
plot(x2, type = 'itemscore', which.items = 1:2)
plot(x2, type = 'trace', which.items = 1, facet_items = FALSE) #facet by group
plot(x2, type = 'info')

x3 <- mirt(Science, 2)
plot(x3, type = 'info')
plot(x3, type = 'SE', theta_lim = c(-3,3))
```
poly2dich

Change polytomous items to dichotomous item format

Description

Transforms a matrix of items into a new matrix where the select polytomous items have been converted into comparable dichotomous items with the same information.

Usage

poly2dich(data, which.items = 1:ncol(data))

Arguments

data

an object of class data.frame or matrix

which.items

a vector indicating which items should be transformed into the dichotomous form. Default uses all input items

Value

Returns an integer matrix

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

Not run:
data(Science)

head(Science)
newScience <- poly2dich(Science)
head(newScience)

newScience2 <- poly2dich(Science, which.items = 2)
head(newScience2)

End(Not run)
Description
Print model object summaries to the console.

Usage
S4 method for signature 'SingleGroupClass'
print(x)

Arguments
x an object of class SingleGroupClass, MultipleGroupClass, or MixedClass

References

Examples
Not run:
x <- mirt(Science, 1)
print(x)
End(Not run)

Description
Provides a nicer output for most printed data.frame objects defined by functions in mirt.

Usage
S3 method for class 'mirt_df'
print(x, digits = 3, ...)

Arguments
x object of class 'mirt_df'
digits number of digits to round
... additional arguments passed to print(...)

print.mirt_df
Print generic for customized data.frame console output
print.mirt_list

Print generic for customized list console output

Description

Provides a nicer output for most printed list objects defined by functions in `mirt`.

Usage

```r
## S3 method for class 'mirt_list'
print(x, digits = 3, ...)
```

Arguments

- `x` object of class 'mirt_list'
- `digits` number of digits to round
- `...` additional arguments passed to `print(...)`

print.mirt_matrix

Print generic for customized matrix console output

Description

Provides a nicer output for most printed matrix objects defined by functions in `mirt`.

Usage

```r
## S3 method for class 'mirt_matrix'
print(x, digits = 3, ...)
```

Arguments

- `x` object of class 'mirt_matrix'
- `digits` number of digits to round
- `...` additional arguments passed to `print(...)"
probtrace

Function to calculate probability trace lines

Description

Given an internal mirt object extracted from an estimated model, or the single-group estimated model itself, compute the probability trace lines for all categories.

Usage

probtrace(x, Theta)

Arguments

x
either an extracted internal mirt object containing item information (see extract.item) or a model of class SingleGroupClass typically returned by the function mirt or bfactor

Theta
a vector (unidimensional) or matrix (unidimensional/multidimensional) of latent trait values

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

See Also

extract.item, extract.group

Examples

mod <- mirt(Science, 1)

single item probability tracelines for Item 2
extr.2 <- extract.item(mod, 2)
Theta <- matrix(seq(-4, 4, by = .1))
traceline <- probtrace(extr.2, Theta)
head(data.frame(traceline, Theta=Theta))

probability tracelines for all items in test
tracelines <- probtrace(mod, Theta)
head(tracelines)
Compute posterior estimates of random effect

Description

Stochastically compute random effects for MixedClass objects with Metropolis-Hastings samplers and averaging over the draws. Returns a list of the estimated effects.

Usage

randef(x, ndraws = 1000, thin = 10, return.draws = FALSE)

Arguments

x an estimated model object from the mixedmirt function
ndraws total number of draws to perform. Default is 1000
thin amount of thinning to apply. Default is to use every 10th draw
return.draws logical; return a list containing the thinned draws of the posterior?

Author(s)

Phil Chalmers <philip.chalmers@gmail.com>

References

Examples

Not run:
#make an arbitrary groups
covdat <- data.frame(group = rep(paste0('group', 1:49), each=nrow(Science)/49))

#partial credit model
mod <- mixedmirt(Science, covdat, model=1, random = ~ 1|group)
summary(mod)

effects <- randef(mod, ndraws = 2000, thin = 20)
head(effects$Theta)
head(effects$group)

End(Not run)
read.mirt

Translate mirt parameters into suitable structure for plink package

Description

This function exports item parameters from the mirt package to the plink package.

Usage

read.mirt(x, as.irt.pars = TRUE, ...)

Arguments

x an object returned from mirt, bfactor, or multipleGroup
as.irt.pars if TRUE, the parameters will be output as an irt.pars object
... additional arguments to be passed to coef()

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

Examples

Not run:

unidimensional
library(plink)
data <- expand.table(LSAT7)(mod1 <- mirt(data, 1))plinkpars <- read.mirt(mod1)plot(plinkpars)plot(mod1, type = 'trace')

graded
mod2 <- mirt(Science, 1)plinkpars <- read.mirt(mod2)plot(plinkpars)plot(mod2, type = 'trace')

gpcm
mod3 <- mirt(Science, 1, itemtype = 'gpcm')plinkpars <- read.mirt(mod3)plot(plinkpars)plot(mod3, type = 'trace')

nominal
mod4 <- mirt(Science, 1, itemtype = 'nominal')
remap.distance

Remap item categories to have integer distances of 1

Description

The mirt package’s estimation setup requires that all item responses have spaces equal to 1 (e.g., a Likert scale scored from 1 through 5). In the event that categories are missing the categories must
be re-coded. This function is automatically called by the package estimation functions (e.g., mirt), however for convince this function has been extracted for users to better understand the remapping consequences.

Usage

remap.distance(data, message = TRUE)

Arguments

data the response data to remap as a data.frame or matrix
message logical; print message information pertaining to which items were remapped?

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

category 2 for item 1 missing
dat <- Science
dat[,1] <- ifelse(Science[,1] == 2, 1, Science[,1])
apply(dat, 2, table)

mirt() automatically remaps categories
mod <- mirt(dat, 1)
coef(mod, simplify=TRUE)

this is the transformed data used by mirt()
remap_dat <- remap.distance(dat)
apply(remap_dat, 2, table)

residuals-method

Compute model residuals

Description

Return model implied residuals for linear dependencies between items or at the person level. If the latent trait density was approximated (e.g., Davidian curves, Empirical histograms, etc) then passing use_dentype_estimate = TRUE will use the internally saved quadrature and density components (where applicable).
Usage

```r
## S4 method for signature 'SingleGroupClass'
residuals(
  object,
  type = "LD",
  df.p = FALSE,
  full.scores = FALSE,
  QMC = FALSE,
  printvalue = NULL,
  tables = FALSE,
  verbose = TRUE,
  Theta = NULL,
  suppress = 1,
  theta_lim = c(-6, 6),
  quadpts = NULL,
  fold = TRUE,
  technical = list(),
  ...
)
```

Arguments

- **object**: an object of class `SingleGroupClass` or `MultipleGroupClass`. Bifactor models are automatically detected and utilized for better accuracy.
- **type**: type of residuals to be displayed. Can be either 'LD' or 'LDG2' for a local dependence matrix based on the X2 or G2 statistics (Chen & Thissen, 1997), 'Q3' for the statistic proposed by Yen (1984), 'JSI' for the jack-knife statistic proposed Edwards et al. (2018), 'exp' for the expected values for the frequencies of every response pattern, and 'expfull' for the expected values for every theoretically observable response pattern. For the 'LD' and 'LDG2' types, the upper diagonal elements represent the standardized residuals in the form of signed Cramer's V coefficients.
- **df.p**: logical; print the degrees of freedom and p-values?
- **full.scores**: logical; compute relevant statistics for each subject in the original data?
- **QMC**: logical; use quasi-Monte Carlo integration? If `quadpts` is omitted the default number of nodes is 5000.
- **printvalue**: a numeric value to be specified when using the `res='exp'` option. Only prints patterns that have standardized residuals greater than `abs(printvalue)`. The default (NULL) prints all response patterns.
- **tables**: logical; for LD type, return the observed, expected, and standardized residual tables for each item combination?
- **verbose**: logical; allow information to be printed to the console?
- **Theta**: a matrix of factor scores used for statistics that require empirical estimates (i.e., Q3). If supplied, arguments typically passed to `fscores()` will be ignored and these values will be used instead.
suppress

A numeric value indicating which parameter local dependency combinations to flag as being too high. Absolute values for the standardized estimates greater than this value will be returned, while all values less than this value will be set to NA.

theta_lim

Range for the integration grid.

quadpts

Number of quadrature nodes to use. The default is extracted from model (if available) or generated automatically if not available.

fold

Logical; apply the sum ‘folding’ described by Edwards et al. (2018) for the JSI statistic?

technical

List of technical arguments when models are re-estimated (see mirt for details).

... Additional arguments to be passed to fscores().

References

Examples

```r
## Not run:
x <- mirt(Science, 1)
residuals(x)
residuals(x, tables = TRUE)
residuals(x, type = 'exp')
residuals(x, suppress = .15)
residuals(x, df.p = TRUE)

# Pearson's X2 estimate for goodness-of-fit
full_table <- residuals(x, type = 'expfull')
head(full_table)
X2 <- with(full_table, sum((freq - exp)^2 / exp))
df <- nrow(full_table) - extract.mirt(x, 'nest') - 1
p <- pchisq(X2, df = df, lower.tail=FALSE)
data.frame(X2, df, p, row.names='Pearson-X2')

# above FOG test as a function
PearsonX2 <- function(x){
  full_table <- residuals(x, type = 'expfull')
  X2 <- with(full_table, sum((freq - exp)^2 / exp))
  df <- nrow(full_table) - extract.mirt(x, 'nest') - 1
  pchisq(X2, df = df, lower.tail=FALSE)
  data.frame(X2, df, p, row.names='Pearson-X2')
}
RMSD_DIF

RMSD effect size statistic to quantify category-level DIF

Description

This function computes a set of RMSD "badness-of-fit" statistics when investing DIF across a set of grouping variables. In a first step, a (potentially highly constrained) multiple group model is fitted, while in a second step the item (and person) parameters are estimated based on all examinees across all groups. Category level DIF is assessed based on how well the pseudo-table of counts match...
the (constrained) probability functions implied by the original multiple group model (while also weighing across the implied density function of the latent traits). If the RSMD fit is poor, indicating non-ignorable DIF, then the multiple-group model should be adjusted to better account for the large response bias due to using a pooled model. See Lee and von Davier (2020) and Buchholz and Hartig (2019) for details.

Usage

RMSD_DIF(pooled_mod, flag = 0, probfun = TRUE, dentype = "norm")

Arguments

pooled_mod a multiple-group model (used to compute the model-implied probability in the goodness-of-fit test)
flag a numeric value used as a cut-off to help flag larger RMSD values (e.g., flag = .03 will highlight only categories with RMSD values greater than .03)
probfun logical; use probability functions to compute RMSD? If FALSE, the expected score functions will be integrated instead, which may be useful for collapsing across the categories in polytomous items
dentype density to use for the latent trait. Can be 'norm' to use a normal Gaussian density where the mean/variance are extracted from the model object (default), 'snorm' for a standard normal distribution, or 'empirical' to use the density estimate obtained via the E-table

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


See Also

DIF, DRF, multipleGroup, empirical_ES

Examples

```r
Not run:

#----- generate some data
set.seed(12345)
a <- a2 <- matrix(abs(rnorm(15,1,.3)), ncol=1)
```
RMSD_DIF

```r
item 1 has DIF

itemtype <- rep('2PL', nrow(a))
N <- 1000

dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a2, d2, N, itemtype)
dat <- rbind(dataset1, dataset2)
group <- c(rep('D1', N), rep('D2', N))

#-----

fully pooled model
pooled_mod <- multipleGroup(dat, 1, group=group,
invariance = c(colnames(dat), 'free_mean', 'free_var'))
coef(pooled_mod, simplify=TRUE)

RMSD_DIF(pooled_mod)
RMSD_DIF(pooled_mod, dentype = 'empirical')
RMSD_DIF(pooled_mod, flag = .03)

more freely estimated model (item 1 has 2 parameters estimated)

MGmod <- multipleGroup(dat, 1, group=group,
invariance = c(colnames(dat)[-1], 'free_mean', 'free_var'))
coef(MGmod, simplify=TRUE)

RMSD in item.1 now reduced (MG model accounts for DIF)
RMSD_DIF(MGmod)
RMSD_DIF(MGmod, flag = .03)

polytomous example
set.seed(12345)
a <- a2 <- matrix(rlnorm(20,.2,.3))

for the graded model, ensure that there is enough space between the intercepts,
otherwise closer categories will not be selected often (minimum distance of 0.3 here)
diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum))
diffs <- -(diffs - rowMeans(diffs))
d <- d2 <- diffs + rnorm(20)

item 1 has slope + dif for first intercept parameter

itemtype <- rep('graded', nrow(a))
N <- 1000
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a2, d2, N, itemtype)
```

dat <- rbind(dataset1, dataset2)
group <- c(rep('D1', N), rep('D2', N))

# fully pooled model
pooled_mod <- multipleGroup(dat, 1, group=group,
invariance = c(colnames(dat), 'free_mean', 'free_var'))
coef(pooled_mod, simplify=TRUE)

# Item_1 fits poorly in several categories (RMSD > .05)
RMSD_DIF(pooled_mod)
RMSD_DIF(pooled_mod, flag = .05)
RMSD_DIF(pooled_mod, flag = .1, probfun = FALSE) # use expected score function

# more freely estimated model (item 1 has more parameters estimated)
MGmod <- multipleGroup(dat, 1, group=group,
invariance = c(colnames(dat)[-1], 'free_mean', 'free_var'))
coef(MGmod, simplify=TRUE)

# RMSDs in Item_1 now reduced (MG model better accounts for DIF)
RMSD_DIF(MGmod)
RMSD_DIF(MGmod, flag = .05)
RMSD_DIF(MGmod, probfun = FALSE, flag = .1) # use expected score function

## End(Not run)

---

**Description of SAT12 data**

**Description**

Data obtained from the TESTFACT (Woods et al., 2003) manual, with 32 response pattern scored items for a grade 12 science assessment test (SAT) measuring topics of chemistry, biology, and physics. The scoring key for these data is [1, 4, 5, 2, 3, 1, 2, 1, 3, 1, 2, 4, 2, 1, 5, 3, 4, 4, 1, 4, 3, 3, 4, 1, 3, 5, 1, 3, 1, 5, 4, 5], respectively. However, careful analysis using the nominal response model suggests that the scoring key for item 32 may be incorrect, and should be changed from 5 to 3.

**Author(s)**

Phil Chalmers <rphilip.chalmers@gmail.com>

**References**


**Examples**

```r
Not run:
score the data (missing scored as 0)
head(SAT12)
data <- key2binary(SAT12,
 key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
head(data)

score the data, missing (value of 8) treated as NA
SAT12missing <- SAT12
SAT12missing[SAT12missing == 8] <- NA
data <- key2binary(SAT12missing,
 key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
head(data)

potentially better scoring for item 32 (based on nominal model finding)
data <- key2binary(SAT12,
 key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,3))
End(Not run)
```

**Description of Science data**

A 4-item data set borrowed from `ltm` package in R, first example of the `grm()` function. See more complete documentation therein.

**Author(s)**

Phil Chalmers <rphilip.chalmers@gmail.com>

**References**


**Examples**

```r
Not run:
mod <- mirt(Science, 1)
plot(mod, type = 'trace')
```
show-method

## End(Not run)

### show-method

**Show model object**

#### Description

Print model object summaries to the console.

#### Usage

```r
S4 method for signature 'SingleGroupClass'
show(object)
```

#### Arguments

- **object**: an object of class `SingleGroupClass`, `MultipleGroupClass`, or `MixedClass`

#### References


#### Examples

```r
Not run:
x <- mirt(Science, 1)
show(x)
End(Not run)
```

---

SIBTEST

**Simultaneous Item Bias Test (SIBTEST)**

#### Description

Classical test theory approach to detecting unidirectional and bidirectional (with one crossing location) DIF. This family of statistics is intended for unidimensional tests, and applies a regression-corrected matched-total score approach to quantify the response bias between two groups. Can be used for DIF, DBF, and DTF testing.
SIBTEST

Usage

SIBTEST(
  dat,                     # integer-based dataset to be tested, containing dichotomous or polytomous responses
  group,                   # a vector indicating group membership with the same length as the number of rows in dat
  suspect_set,             # an integer vector indicating which items to inspect with SIBTEST. Including only one value will perform a DIF test, while including more than one will perform a simultaneous bundle test (DBF); including all non-matched items will perform DTF. If missing, a simultaneous test using all the items not listed in match_set will be used (i.e., DTF)
  match_set,               # an integer vector indicating which items to use as the items which are matched (i.e., contain no DIF). These are analogous to 'anchor' items in the likelihood method to locate DIF. If missing, all items other than the items found in the suspect_set will be used
  focal_name = unique(group)[2],  # name of the focal group; e.g., 'focal'. If not specified then one will be selected automatically using unique(group)[2]
  guess_correction = 0,     # a vector of numbers from 0 to 1 indicating how much to correct the items for guessing. It's length should be the same as ncol(dat)
  Jmin = 5,                 # the minimum number of observations required when splitting the data into focal and reference groups conditioned on the matched set
  na.rm = FALSE,            # logical; remove rows in dat with any missing values? If TRUE, rows with missing data will be removed, as well as the corresponding elements in the group input
  LiStout1996 = FALSE,      # logical; perform the crossing test for non-compensatory bias using Li and Stout’s (1996) permutation approach? Default is FALSE, which uses the Chalmers (2018) mixed degrees of freedom method
  permute = 1000,           # the number of permutations to use for the permutation test
  pk_focal = FALSE,         # logical; use packet as focal item?
  correction = TRUE,        # logical; use correction for guessing?
  details = FALSE,          # logical; use details output?
  plot = "none"             # plot type
)

Arguments

dat: integer-based dataset to be tested, containing dichotomous or polytomous responses

group: a vector indicating group membership with the same length as the number of rows in dat

suspect_set: an integer vector indicating which items to inspect with SIBTEST. Including only one value will perform a DIF test, while including more than one will perform a simultaneous bundle test (DBF); including all non-matched items will perform DTF. If missing, a simultaneous test using all the items not listed in match_set will be used (i.e., DTF)

match_set: an integer vector indicating which items to use as the items which are matched (i.e., contain no DIF). These are analogous to 'anchor' items in the likelihood method to locate DIF. If missing, all items other than the items found in the suspect_set will be used

focal_name: name of the focal group; e.g., 'focal'. If not specified then one will be selected automatically using unique(group)[2]

guess_correction: a vector of numbers from 0 to 1 indicating how much to correct the items for guessing. It's length should be the same as ncol(dat)

Jmin: the minimum number of observations required when splitting the data into focal and reference groups conditioned on the matched set

na.rm: logical; remove rows in dat with any missing values? If TRUE, rows with missing data will be removed, as well as the corresponding elements in the group input

LiStout1996: logical; perform the crossing test for non-compensatory bias using Li and Stout’s (1996) permutation approach? Default is FALSE, which uses the Chalmers (2018) mixed degrees of freedom method
### Details

SIBTEST is similar to the Mantel-Haenszel approach for detecting DIF but uses a regression correction based on the KR-20/coefficienB alpha reliability index to correct the observed differences when the latent trait distributions are not equal. Function supports the standard SIBTEST for dichotomous and polytomous data (compensatory) and supports crossing DIF testing (i.e., non-compensatory/non-uniform) using the asymptotic sampling distribution version of the Crossing-SIBTEST (CSIBTEST) statistic described by Chalmers (2018) and the permutation method described by Li and Stout (1996). For convenience, the beta coefficient for CSIBTEST is always reported as an absolute value.

### Author(s)

Phil Chalmers `<rphilip.chalmers@gmail.com>`

### References


Examples

## Not run:

```r
set.seed(1234)
n <- 30
N <- 500
a <- matrix(1, n)
d <- matrix(rnorm(n), n)
group <- c(rep('reference', N), rep('focal', N*2))

groups completely equal
dat1 <- simdata(a, d, N, itemtype = 'dich')
dat2 <- simdata(a, d, N*2, itemtype = 'dich')
dat <- rbind(dat1, dat2)

DIF (all other items as anchors)
SIBTEST(dat, group, suspect_set = 6)

Some plots depicting the above tests
SIBTEST(dat, group, suspect_set = 6, plot = 'observed')
SIBTEST(dat, group, suspect_set = 6, plot = 'weights')
SIBTEST(dat, group, suspect_set = 6, plot = 'wdifference')

Include CSIBTEST with randomization method
SIBTEST(dat, group, suspect_set = 6, LiStout1996 = TRUE)

DIF (specific anchors)
SIBTEST(dat, group, match_set = 1:5, suspect_set = 6)
SIBTEST(dat, group, match_set = 1:5, suspect_set = 6, LiStout1996 = TRUE)

DBF (all and specific anchors, respectively)
SIBTEST(dat, group, suspect_set = 11:30)
SIBTEST(dat, group, match_set = 1:5, suspect_set = 11:30)

DTF
SIBTEST(dat, group, suspect_set = 11:30)
SIBTEST(dat, group, match_set = 1:10) #equivalent

different hyper pars
dat1 <- simdata(a, d, N, itemtype = 'dich')
dat2 <- simdata(a, d, N*2, itemtype = 'dich', mu = .5, sigma = matrix(1.5))
dat <- rbind(dat1, dat2)
SIBTEST(dat, group, 6:30)
SIBTEST(dat, group, 11:30)

DIF testing with anchors 1 through 5
SIBTEST(dat, group, 6, match_set = 1:5)
SIBTEST(dat, group, 7, match_set = 1:5)
SIBTEST(dat, group, 8, match_set = 1:5)
```
# DIF testing with all other items as anchors
SIBTEST(dat, group, 6)
SIBTEST(dat, group, 7)
SIBTEST(dat, group, 8)

## ------------
## systematic differing slopes and intercepts (clear DTF)
dat1 <- simdata(a, d, N, itemtype = 'dich')
dat2 <- simdata(a + c(numeric(15), rnorm(n-15, 1, .25)), d + c(numeric(15), rnorm(n-15, 1, 1)),
               N*2, itemtype = 'dich')
dat <- rbind(dat1, dat2)
SIBTEST(dat, group, 6:30)
SIBTEST(dat, group, 11:30)

# Some plots depicting the above tests
SIBTEST(dat, group, suspect_set = 11:30, plot = 'observed')
SIBTEST(dat, group, suspect_set = 11:30, plot = 'weights')
SIBTEST(dat, group, suspect_set = 11:30, plot = 'wdifference')

# DIF testing using valid anchors
SIBTEST(dat, group, suspect_set = 6, match_set = 1:5)
SIBTEST(dat, group, suspect_set = 7, match_set = 1:5)
SIBTEST(dat, group, suspect_set = 30, match_set = 1:5)

# randomization method is fairly poor when smaller matched-set used
SIBTEST(dat, group, suspect_set = 30, match_set = 1:5, LiStout1996=TRUE)
SIBTEST(dat, group, suspect_set = 30, LiStout1996=TRUE)

## End(Not run)

---

**simdata**

*Simulate response patterns*

**Description**

Simulates response patterns for compensatory and noncompensatory MIRT models from multivariate normally distributed factor ($\theta$) scores, or from a user input matrix of $\theta$'s.

**Usage**

```r
simdata(
 a,
 d,
 N,
 itemtype,
 sigma = NULL,
 mu = NULL,
 guess = 0,
```
upper = 1,
nominal = NULL,
t = NULL,
Theta = NULL,
gpcm_mats = list(),
returnList = FALSE,
model = NULL,
equal.K = TRUE,
which.items = NULL,
mins = 0,
lca_cats = NULL,
prob.list = NULL
)

Arguments

a

a matrix/vector of slope parameters. If slopes are to be constrained to zero then use NA or simply set them equal to 0

d

a matrix/vector of intercepts. The matrix should have as many columns as the item with the largest number of categories, and filled empty locations with NA. When a vector is used the test is assumed to consist only of dichotomous items (because only one intercept per item is provided). When itemtype = 'lca' intercepts will not be used

N

sample size

itemtype

a character vector of length nrow(a) (or 1, if all the item types are the same) specifying the type of items to simulate. Inputs can either be the same as the inputs found in the itemtype argument in mirt or the internal classes defined by the package. Typical itemtype inputs that are passed to mirt are used then these will be converted into the respective internal classes automatically. If the internal class of the object is specified instead, the inputs can be 'dich', 'graded', 'gpcm', 'sequential', or 'lca', for dichotomous, graded, generalized partial credit, sequential, nominal, nested logit, partially compensatory, generalized graded unfolding model, and latent class analysis model. Note that for the gpcm, nominal, and nested logit models there should be as many parameters as desired categories, however to parametrized them for meaningful interpretation the first category intercept should equal 0 for these models (second column for 'nestlogit', since first column is for the correct item traceline). For nested logit models the 'correct' category is always the lowest category (i.e., == 1). It may be helpful to use mod2values on data-sets that have already been estimated to understand the itemtypes more intimately

sigma

a covariance matrix of the underlying distribution. Default is the identity matrix. Used when Theta is not supplied

mu

a mean vector of the underlying distribution. Default is a vector of zeros. Used when Theta is not supplied

guess

a vector of guessing parameters for each item; only applicable for dichotomous items. Must be either a scalar value that will affect all of the dichotomous items, or a vector with as many values as to be simulated items
upper

nominal

t

Theta

gpcm_mats

returnList

model

equal.K

which.items

mins

lca_cats

prob.list

Details

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>
References


Examples

### Parameters from Reckase (2009), p. 153

```r
set.seed(1234)

a <- matrix(c(
 .7471, .0250, .1428,
 .4595, .0097, .0692,
 .8613, .0067, .4040,
 1.0141, .0080, .0470,
 .5521, .0204, .1482,
 1.3547, .0064, .5362,
 1.3761, .0861, .4676,
 .8525, .0383, .2574,
 1.0113, .0055, .2024,
 .9212, .0119, .3044,
 .0026, .0119, .8036,
 .0088, .1905, 1.1945,
 .0575, .0853, .7077,
 .0182, .3307, 2.1414,
 .0256, .0478, .8551,
 .0246, .1496, .9348,
 .0262, .2872, 1.3561,
 .0038, .2229, .8993,
 .0039, .4720, .7318,
 .0068, .0949, .6416,
 .3073, .9704, .0031,
 .1819, .4980, .0020,
 .4115, 1.1136, .2008,
 .1536, 1.7251, .0345,
 .1530, .6688, .0020,
 .2890, 1.2419, .0220,
 .1341, 1.4882, .0050,
 .0524, .4754, .0012,
 .2139, .4612, .0063,
 .1761, 1.1200, .0870),30,3,byrow=TRUE)*1.702
d <- matrix(c(.1826,-.1924,-.4656,-.4336,-.4428,-.5845,-1.0403,
 .6431,.0122,.0912,.8082,-.1867,.4533,-1.8398,.4139,
 -.3004,-.1824,.5125,.1342,.0230,.6172,-.1955,-.3668,
 -1.7590,-.2434,.4925,-.3410,.2896,.006,.0329),ncol=1)*1.702
mu <- c(-.4, -.7, .1)
sigma <- matrix(c(1.21, .297, 1.232, .297, .81, .252, 1.232, .252, 1.96),3,3)
```
dataset1 <- simdata(a, d, 2000, itemtype = '2PL')
dataset2 <- simdata(a, d, 2000, itemtype = '2PL', mu = mu, sigma = sigma)

#mod <- mirt(dataset1, 3, method = 'MHRM')
#coef(mod)

## Not run:
### Unidimensional graded response model with 5 categories each

a <- matrix(rlnorm(20,.2,.3))

diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum))
diffs <- -(diffs - rowMeans(diffs))
d <- diffs + rnorm(20)

dat <- simdata(a, d, 500, itemtype = 'graded')
# mod <- mirt(dat, 1)

### An example of a mixed item, bifactor loadings pattern with correlated specific factors

a <- matrix(c(
  .8,.4,NA,
  .4,.4,NA,
  .7,.4,NA,
  .8,NA,.4,
  .4,NA,.4,
  .7,NA,.4),ncol=3,byrow=TRUE)

d <- matrix(c(
  -1.0,NA,NA,
  1.5,NA,NA,
  0.0,NA,NA,
  0.0,-1.0,1.5, #the first 0 here is the recommended constraint for nominal
  0.0,1.0,-1, #the first 0 here is the recommended constraint for gpcm
  2.0,0.0,NA),ncol=3,byrow=TRUE)

nominal <- matrix(NA, nrow(d), ncol(d))
#the first 0 and last (ncat - 1) = 2 values are the recommended constraints
nominal[4, ] <- c(0,1.2,2)

sigma <- diag(3)
sigma[2,3] <- sigma[3,2] <- .25

items <- c('2PL','2PL','2PL','nominal','gpcm','graded')

dataset <- simdata(a,d,2000,items,sigma=sigma,nominal=nominal)

#mod <- bfactor(dataset, c(1,1,1,2,2,2), itemtype=c(rep('2PL', 3), 'nominal', 'gpcm','graded'))
#coef(mod)

#### Convert standardized factor loadings to slopes
F2a <- function(F, D=1.702){
  h2 <- rowSums(F^2)
  a <- (F / sqrt(1 - h2)) * D
  a
}

(F <- matrix(c(rep(.7, 5), rep(.5,5))))
(a <- F2a(F))
d <- rnorm(10)

dat <- simdata(a, d, 5000, itemtype = '2PL')
mod <- mirt(dat, 1)
coef(mod, simplify=TRUE)$items
summary(mod)

mod2 <- mirt(dat, 'F1 = 1-10
  CONSTRAINT = (1-5, a1), (6-10, a1)')
summary(mod2)
anova(mod, mod2)

### Unidimensional nonlinear factor pattern

theta <- rnorm(2000)
Theta <- cbind(theta,theta^2)

a <- matrix(c(
  .8,.4,
  .4,.4,
  .7,.4,
  .8,NA,
  .4,NA,
  .7,NA),ncol=2,byrow=TRUE)
d <- matrix(rnorm(6))
itemtype <- rep('2PL',6)
onnlndata <- simdata(a=a, d=d, itemtype=itemtype, Theta=Theta)

#model <- '
#F1 = 1-6
#(F1 * F1) = 1-3'
#mod <- mirt(nonnldata, model)
#coef(mod)

#### 2PLNRM model for item 4 (with 4 categories), 2PL otherwise

a <- matrix(rlnorm(4,0,.2))

#first column of item 4 is the intercept for the correct category of 2PL model,
# otherwise nominal model configuration

d <- matrix(c(
  -1.0,NA,NA,NA,
  1.5,NA,NA,NA,
```r
0.0,NA,NA,NA,
1, 0.0,-0.5,0.5),nrow=4,byrow=TRUE)
nominal <- matrix(NA, nrow(d), ncol(d))
nominal[4,] <- c(NA,0,.5,.6)
items <- c(rep('2PL',3),'nestlogit')
dataset <- simdata(a,d,2000,items,nominal=nominal)
#mod <- mirt(dataset, 1, itemtype = c('2PL', '2PL', '2PL', '2PLNRM'), key=c(NA,NA,NA,1))
#coef(mod)
#itemplot(mod,4)
#return list of simulation parameters
listobj <- simdata(a,d,2000,items,nominal=nominal, returnList=TRUE)
str(listobj)
generate dataset from converged model
mod <- mirt(Science, 1, itemtype = c(rep('gpcm', 3), 'nominal'))
sim <- simdata(model=mod, N=1000)
head(sim)
Theta <- matrix(rnorm(100))
sim <- simdata(model=mod, Theta=Theta)
head(sim)
alternatively, define a suitable object with functions from the mirtCAT package
library(mirtCAT)
ntitems <- 50
a1 <- rlnorm(nitems, .2,.2)
d <- rnorm(nitems)
g <- rbeta(nitems, 20, 80)
pars <- data.frame(a1=a1, d=d, g=g)
head(pars)
obj <- generate.mirt_object(pars, "3PL")
dat <- simdata(N=200, model=obj)
10 item GGUMs test with 4 categories each
a <- rlnorm(10, .2,.2)
b <- rnorm(10) #passed to d= input, but used as the b parameters
diffs <- t(apply(matrix(runif(10*3, .3, 1), 10), 1, cumsum))
t <- -(diffs - rowMeans(diffs))
dat <- simdata(a, b, 1000, 'ggum', t=t)
apply(dat, 2, table)
mod <- mirt(dat, 1, 'ggum')
coef(mod)
```

# prob.list example

# custom probability function that returns a matrix
fun <- function(a, b, theta){
  P <- 1 / (1 + exp(-a * (theta-b))
  cbind(1-P, P)
}

set.seed(1)
theta <- matrix(rnorm(100))
prob.list <- list()
nitems <- 5
a <- rlnorm(nitems, .2, .2); b <- rnorm(nitems, 0, 1/2)
for(i in 1:nitems) prob.list[[i]] <- fun(a[i], b[i], theta)
str(prob.list)

dat <- simdata(prob.list=prob.list)
head(dat)

# prob.list input is useful when defining custom items as well
name <- 'old2PL'
par <- c(a = .5, b = -2)
est <- c(TRUE, TRUE)
P.old2PL <- function(par,Theta, ncat){
  a <- par[1]
  b <- par[2]
  P1 <- 1 / (1 + exp(-1*a*(Theta - b))
  cbind(1-P1, P1)
}

x <- createItem(name, par=par, est=est, P=P.old2PL)
prob.list[[1]] <- x@P(x@par, theta)

## End(Not run)

---

**SingleGroupClass-class**

Class "SingleGroupClass"

**Description**

Defines the object returned from mirt when model is exploratory.

**Slots**

* Call: function call
  * Data: list of data, sometimes in different forms
**Summary of model object**

**Options:** list of estimation options

**Fit:** a list of fit information

**Model:** a list of model-based information

**ParObjects:** a list of the S4 objects used during estimation

**OptimInfo:** a list of arguments from the optimization process

**Internals:** a list of internal arguments for secondary computations (inspecting this object is generally not required)

**vcov:** a matrix represented the asymptotic covariance matrix of the parameter estimates

**time:** a data.frame indicating the breakdown of computation times in seconds

**Methods**

- `anova` signature(object = "SingleGroupClass")
- `coef` signature(object = "SingleGroupClass")
- `plot` signature(x = "SingleGroupClass", y = "missing")
- `print` signature(x = "SingleGroupClass")
- `residuals` signature(object = "SingleGroupClass")
- `show` signature(object = "SingleGroupClass")
- `summary` signature(object = "SingleGroupClass")

**Author(s)**

Phil Chalmers <rphilip.chalmers@gmail.com>

**References**


**Description**

Transforms coefficients into a standardized factor loading's metric. For `MixedClass` objects, the fixed and random coefficients are printed. Note that while the output to the console is rounded to three digits, the returned list of objects is not. For simulations, use output <- `summary` (mod, verbose = FALSE) to suppress the console messages.
Usage

```r
S4 method for signature 'SingleGroupClass'
summary(
 object,
 rotate = "oblimin",
 Target = NULL,
 suppress = 0,
 verbose = TRUE,
 ...
)
```

Arguments

- `object`: an object of class `SingleGroupClass`, `MultipleGroupClass`, or `MixedClass`
- `rotate`: a string indicating which rotation to use for exploratory models, primarily from the GPArotation package (see documentation therein).
  For models that are not exploratory this input will automatically be set to `'none'`
- `Target`: a dummy variable matrix indicating a target rotation pattern. This is required for rotations such as `'targetT'`, `'targetQ'`, `'pstT'`, and `'pstQ'`
- `suppress`: a numeric value indicating which (possibly rotated) factor loadings should be suppressed. Typical values are around .3 in most statistical software. Default is 0 for no suppression
- `verbose`: logical; allow information to be printed to the console?
- `...`: additional arguments to be passed

References


See Also

`coef-method`

Examples

```r
Not run:
x <- mirt(Science, 2)
summary(x)
summary(x, rotate = "varimax")
```
Function to calculate test information

Description

Given an estimated model compute the test information.

Usage

testinfo(
  x, Theta,
  degrees = NULL, group = NULL, individual = FALSE,
  which.items = 1:extract.mirt(x, "nitems")
)

Arguments

x an object of class 'SingleGroupClass', or an object of class 'MultipleGroupClass' if a suitable group input were supplied

Theta a matrix of latent trait values

degrees a vector of angles in degrees that are between 0 and 90. Only applicable when the input object is multidimensional

group group argument to pass to `extract.group` function. Required when the input object is a multiple-group model

individual logical; return a data.frame of information traceline for each item?

which.items an integer vector indicating which items to include in the expected information function. Default uses all possible items

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

```r
dat <- expand.table(deAyala)
mod <- mirt(dat, 1, '2PL', pars = 'values')
Theta <- matrix(seq(-4, 4, .01))
tinfo <- testinfo(mod, Theta)
plot(Theta, tinfo, type = 'l')

Not run:
compare information loss between two tests
tinfo_smaller <- testinfo(mod, Theta, which.items = 3:5)

removed item informations
plot(Theta, iteminfo(extract.item(mod, 1), Theta), type = 'l')
plot(Theta, iteminfo(extract.item(mod, 2), Theta), type = 'l')

most loss of info around -1 when removing items 1 and 2; expected given item info functions
plot(Theta, tinfo_smaller - tinfo, type = 'l')

End(Not run)
```

### thetaComb

Create all possible combinations of vector input

**Description**

This function constructs all possible k-way combinations of an input vector. It is primarily useful when used in conjunction with the `mirt` function, though users may have other uses for it as well. See `expand.grid` for more flexible combination formats.

**Usage**

```r
thetaComb(theta, nfact, intercept = FALSE)
```

**Arguments**

- `theta`: the vector from which all possible combinations should be obtained
- `nfact`: the number of observations (and therefore the number of columns to return in the matrix of combinations)
- `intercept`: logical; should a vector of 1’s be appended to the first column of the result to include an intercept design component? Default is `FALSE`
Value
a matrix with all possible combinations

Author(s)
Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

# all possible joint combinations for the vector -4 to 4
thetaComb(-4:4, 2)

# all possible binary combinations for four observations
thetaComb(c(0,1), 4)

# all possible binary combinations for four observations (with intercept)
thetaComb(c(0,1), 4, intercept=TRUE)

traditional2mirt

Convert traditional IRT metric into slope-intercept form used in mirt

Description
This is a helper function for users who have previously available traditional/classical IRT parameters and want to know the equivalent slope-intercept translation used in mirt. Note that this function assumes that the supplied models are unidimensional by definition (i.e., will have only one slope/discrimination). If there is no supported slope-intercept transformation available then the original vector of parameters will be returned by default.

Usage

traditional2mirt(x, cls, ncat)

Arguments

x a vector of parameters to transform
cls the class or itemtype of the supplied model
ncat the number of categories implied by the IRT model
Details

Supported class transformations for the cls input are:

**Rasch, 2PL, 3PL, 3PLu, 4PL** Form must be: (discrimination, difficulty, lower-bound, upper-bound)

**graded** Form must be: (discrimination, difficulty 1, difficulty 2, ..., difficulty k-1)

**gpcm** Form must be: (discrimination, difficulty 1, difficulty 2, ..., difficulty k-1)

**nominal** Form must be: (discrimination 1, discrimination 2, ..., discrimination k, difficulty 1, difficulty 2, ..., difficulty k)

Value

a named vector of slope-intercept parameters (if supported)

Examples

```r
classical 3PL model
vec <- c(a=1.5, b=-1, g=.1, u=1)
slopeint <- traditional2mirt(vec, '3PL', ncat=2)
slopeint

classical graded model (four category)
vec <- c(a=1.5, b1=-1, b2=0, b3=1.5)
slopeint <- traditional2mirt(vec, 'graded', ncat=4)
slopeint

classical generalize partial credit model (four category)
vec <- c(a=1.5, b1=-1, b2=0, b3=1.5)
slopeint <- traditional2mirt(vec, 'gpcm', ncat=4)
slopeint

classical nominal model (4 category)
vec <- c(a1=.5, a2 = -1, a3=1, a4=-.5, d1=1, d2=-1, d3=-.5, d4=.5)
slopeint <- traditional2mirt(vec, 'nominal', ncat=4)
slopeint
```

vcov-method

Extract parameter variance covariance matrix

Description

Extract parameter variance covariance matrix

Usage

```r
S4 method for signature 'SingleGroupClass'
vcov(object)
```
Arguments

object an object of class SingleGroupClass, MultipleGroupClass, or MixedClass

References


Examples

```r
Not run:
x <- mirt(Science, 1, SE=TRUE)
vcov(x)

End(Not run)
```

wald

Wald statistics for mirt models

Description

Compute a Wald test given an \( L \) vector or matrix of numeric contrasts. Requires that the model information matrix be computed (by passing SE = TRUE when estimating the model). Use `wald(model)` to observe how the information matrix columns are named, especially if the estimated model contains constrained parameters (e.g., 1PL).

Usage

```r
wald(object, L, C = NULL)
```

Arguments

- **object** estimated object from `mirt`, `bfactor`, `multipleGroup`, `mixedmirt`, or `mdirt`
- **L** a coefficient matrix with dimensions \( n \text{constrasts} \times n \text{pars.estimated} \), or a character vector giving the hypothesis in symbolic form (syntax format borrowed from the `car` package; see Details below). Omitting this value will return the column names of the information matrix used to identify the (potentially constrained) parameters
- **C** a constant vector of population parameters to be compared along side \( L \), where \( \text{length}(C) = \text{row}(L) \). By default a vector of 0’s is constructed. Note that when using the syntax input for \( L \) this argument is ignored

The following description is borrowed from car package documentation pertaining to the character vector input to the argument \( L \): “The hypothesis matrix
can be supplied as a numeric matrix (or vector), the rows of which specify linear combinations of the model coefficients, which are tested equal to the corresponding entries in the right-hand-side vector, which defaults to a vector of zeroes.

Alternatively, the hypothesis can be specified symbolically as a character vector with one or more elements, each of which gives either a linear combination of coefficients, or a linear equation in the coefficients (i.e., with both a left and right side separated by an equals sign). Components of a linear expression or linear equation can consist of numeric constants, or numeric constants multiplying coefficient names (in which case the number precedes the coefficient, and may be separated from it by spaces or an asterisk); constants of 1 or -1 may be omitted. Spaces are always optional. Components are separated by plus or minus signs. Newlines or tabs in hypotheses will be treated as spaces. See the examples below."

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References


Examples

## Not run:

#View parnumber index
data(LSAT7)
data <- expand.table(LSAT7)
mod <- mirt(data, 1, SE = TRUE)
coef(mod)

# see how the information matrix relates to estimated parameters, and how it lines up
# with the parameter index
(infonames <- wald(mod))
index <- mod2values(mod)
index[index$est, ]

#second item slope equal to 0?
L <- matrix(0, 1, 10)
L[1,3] <- 1
wald(mod, L)

# same as above using character syntax input
infonames
wald(mod, "a1.5 = 0")

#simultaneously test equal factor slopes for item 1 and 2, and 4 and 5
L <- matrix(0, 2, 10)
```
L[1,1] <- L[2, 7] <- 1
L[1,3] <- L[2, 9] <- -1
L
wald(mod, L)

Again, using more efficient syntax
infonames
wald(mod, c("a1.1 = a1.5", "a1.13 = a1.17"))

log-Likelihood tests (requires estimating a new model)
cmodel <- 'theta = 1-5
 CONSTRAINT = (1,2, a1), (4,5, a1)'
mod2 <- mirt(data, cmodel)
or, equivalently
mod2 <- mirt(data, 1, constrain = list(c(1,5), c(13,17)))
anova(mod2, mod)

#####
test equality of means in multi-group model:
H0: (mu1 - mu2) = (mu3 - mu4)

set.seed(12345)
a <- matrix(abs(rnorm(15,1,.3)), ncol=1)
d <- matrix(rnorm(15,0,.7),ncol=1)
itemtype <- rep('2PL', nrow(a))
N <- 500
dataset1 <- simdata(a, d, N, itemtype)
dataset2 <- simdata(a, d, N, itemtype, mu = .5)
dataset3 <- simdata(a, d, N, itemtype, mu = -1)
dataset4 <- simdata(a, d, N, itemtype, mu = -.5)
dat <- rbind(dataset1, dataset2, dataset3, dataset4)
group <- factor(rep(paste0('D', 1:4), each=N))
levels(group)
models <- 'F1 = 1-15'

3 means estimated
mod_free <- multipleGroup(dat, models, group = group, SE=TRUE,
 invariance=c('slopes', 'intercepts', 'free_var','free_means'))
wald(mod_free) # obtain parameter names
View(mod2values(mod_free))

reference group mean = 0 by default
wald(mod_free, c("0 - MEAN_1.123 = MEAN_1.185 - MEAN_1.247"))

End(Not run)
```
Index

* Lagrange
  lagrange, 82
* SIBTEST
  SIBTEST, 171
* area
  areainfo, 6
* bootstrapped
  boot.mirt, 16
* bootstrap
  boot.LR, 15
* classes
  DiscreteClass-class, 29
  MixedClass-class, 129
  MixtureClass-class, 137
  MultipleGroupClass-class, 146
  SingleGroupClass-class, 182
* conversion
  likert2int, 83
* convert
  mod2values, 138
* createGroup
  createGroup, 19
* createItem
  createItem, 20
* crossing-SIBTEST
  SIBTEST, 171
* data
  Bock1997, 14
  deAyala, 25
  expand.table, 47
  imPUTEMissing, 66
  likert2int, 83
  LSAT6, 86
  LSAT7, 87
  poly2dich, 156
  SAT12, 169
  Science, 170
  simdata, 175
* derivatives
  numerical_deriv, 147
* differential
  DIF, 25
  DRF, 32
  DTF, 37
* discrimination
  MDIFF, 91
  MDISC, 99
* effects
  fixef, 59
  randef, 160
* empirical
  empirical_plot, 43
* errors
  extract.mirt, 43
* extract
  extract.group, 52
  extract.item, 53
  extract.mirt, 54
* factor.scores
  fscores, 60
* fit
  itemfit, 67
  itemGAM, 73
  M2, 88
  personfit, 149
* fixed
  fixef, 59
* functioning
  DIF, 25
  DRF, 32
  DTF, 37
* imputation
  averageMI, 7
* impute
  imputeMissing, 66
INDEX

* information
  areainfo, 6
  iteminfo, 76
  testinfo, 185
* item
  DIF, 25
  itemfit, 67
  itemGAM, 73
* likelihood
  PLCI.mirt, 150
* models
  bfactor, 9
  mdirt, 92
  mirt, 100
  multipleGroup, 139
* model
  M2, 88
  mod2values, 138
* multiple
  averageMI, 7
* numerical
  numerical_deriv, 147
* package
  mirt-package, 4
* parallel
  mirtCluster, 128
* parametric
  boot.LR, 15
* person
  personfit, 149
* plink
  read.mirt, 161
* plots
  empirical_plot, 43
* plot
  itemplot, 78
* profiled
  PLCI.mirt, 150
* random
  randef, 160
* reliability
  empirical_rxx, 45
  marginal_rxx, 90
* response
  DRF, 32
* scores
  estfun.AllModelClass, 46
* score
  expected.test, 51
* standard
  boot.mirt, 16
* test
  DTF, 37
  lagrange, 82
* tracelines
  probtrace, 159
* value
  expected.item, 50
* wald
  wald, 189
anova, 10
anova,DiscreteClass-method
  (anova-method), 5
anova,MixedClass-method (anova-method),
  5
anova,MixtureClass-method
  (anova-method), 5
anova,MultipleGroupClass-method
  (anova-method), 5
anova,SingleGroupClass-method
  (anova-method), 5
anova-method, 5, 110
areainfo, 6
averageMI, 7, 64, 115
bfactor, 9, 46, 53, 79, 100, 115, 124, 126,
  159, 177
Bock1997, 14
boot, 31
boot.LR, 15
boot.mirt, 16, 95, 110, 133, 152
bs, 102, 106
coeff,DiscreteClass-method
  (coef-method), 17
coeff,MixedClass-method (coef-method), 17
coeff,MixtureClass-method (coef-method),
  17
coeff,MultipleGroupClass-method
  (coef-method), 17
coeff,SingleGroupClass-method
  (coef-method), 17
coeff-method, 17, 110
createGroup, 19
createtme, 20, 88, 92, 94, 102, 110
data.matrix, 101
deAyala, 25
DIF, 25, 33, 37, 38, 139, 141, 167
DiscreteClass-class, 29
draw_parameters, 30, 33
DRF, 28, 30, 32, 141, 167
DTF, 37

empirical_ES, 40, 167
empirical_plot, 43
empirical_rxx, 45, 90
estfun.AllModelClass, 46
expand.grid, 186
expand.table, 47, 115
expected.item, 50, 51
expected.test, 50, 51
extract.group, 6, 52, 54, 56, 90–92, 99, 100, 141, 159, 185
extract.item, 50, 52, 53, 56, 76, 77, 115, 159
extract.mirt, 52, 54, 56, 115, 139

factor, 140
fixedCalib, 57
fixef, 59, 115, 133
fscores, 40, 41, 45, 60, 67, 69, 70, 74, 88, 94, 95, 109, 110, 149
gen.difficulty, 65
imputeMissing, 66, 110
integrate, 6
itemfit, 67, 74, 94, 95, 110, 149
itemGAM, 44, 68, 71, 73
iteminfo, 76, 79, 115
itemplot, 44, 78, 110

key2binary, 80, 84, 115

lagrange, 82
lattice, 33, 41, 44, 70, 74, 79, 154
likert2int, 83
logLik,DiscreteClass-method
   (logLik-method), 85
logLik,MixedClass-method
   (logLik-method), 85
logLik,MixtureClass-method
   (logLik-method), 85
logLik,MultipleGroupClass-method
   (logLik-method), 85
logLik,SingleGroupClass-method
   (logLik-method), 85
logLik-method, 85
LSAT6, 86
LSAT7, 87
M2, 88, 94, 95, 110
marginal_rxx, 45, 90
MDIFF, 91
mdirt, 29, 63, 92, 155, 186
MDISC, 92, 99
mirt, 9–11, 16, 21, 43, 46, 57, 59, 62, 65, 82, 93, 94, 100, 126, 131–133, 140, 141, 159, 163, 165, 176, 177, 182
mirt-package, 4
mirt.model, 9, 57, 93, 95, 101, 104, 105, 109, 110, 123, 131, 140
mirtCluster, 15, 25, 63, 95, 103, 108, 110, 128, 130
MixedClass-class, 129, 132
mixedmirt, 59, 100, 109, 115, 126, 129, 130, 160
MixtureClass-class, 137
mod2values, 56, 82, 115, 138, 151, 176
multipleGroup, 10, 25–28, 33, 38, 40, 46, 52, 57, 100, 115, 126, 137, 139, 147, 167
MultipleGroupClass-class, 10, 141, 146
ns, 102, 106
numerical_deriv, 22, 82, 147

optim, 103
p.adjust, 27, 33
personfit, 71, 110, 149
PLCI.mirt, 150
plogis, 105, 126
plot,DiscreteClass,missing-method
   (plot,MultipleGroupClass,missing-method), 152
plot,MixtureClass,missing-method
   (plot,MultipleGroupClass,missing-method), 152
plot,MultipleGroupClass,missing-method, 152
plot,SingleGroupClass,missing-method
   (plot,MultipleGroupClass,missing-method), 152
INDEX

plot, SingleGroupClass-method (plot, MultipleGroupClass, missing-method), 152
plot-method, 110
plot-method (plot, MultipleGroupClass, missing-method), 152
plot.itemGAM (itemGAM), 73
poly2dich, 84, 156
print, DiscreteClass-method (print-method), 157
print, MixedClass-method (print-method), 157
print, MixtureClass-method (print-method), 157
print, MultipleGroupClass-method (print-method), 157
print, SingleGroupClass-method (print-method), 157
print-method, 157
print.mirt_df, 157
print.mirt_list, 158
print.mirt_matrix, 158
protrace, 41, 115, 159
randef, 132, 133, 160
read.mirt, 161
remap.distance, 162
residuals, DiscreteClass-method (residuals-method), 163
residuals, MixtureClass-method (residuals-method), 163
residuals, MultipleGroupClass-method (residuals-method), 163
residuals, SingleGroupClass-method (residuals-method), 163
residuals-method, 110, 163
RMSD_DIF, 166
SAT12, 169
Science, 170
show, DiscreteClass-method (show-method), 171
show, MixedClass-method (show-method), 171
show, MixtureClass-method (show-method), 171
show, MultipleGroupClass-method (show-method), 171
show, SingleGroupClass-method (show-method), 171
SIBTEST, 171
simdata, 115, 175
summary, DiscreteClass-method (summary-method), 183
summary, MixedClass-method (summary-method), 183
summary, MixtureClass-method (summary-method), 183
summary, MultipleGroupClass-method (summary-method), 183
summary, SingleGroupClass-method (summary-method), 183
summary-method, 110, 183
testinfo, 90, 115, 185
thetaComb, 93, 95, 186
traditional2mirt, 187
unisroot, 66
vcov, DiscreteClass-method (vcov-method), 188
vcov, MixedClass-method (vcov-method), 188
vcov, MixtureClass-method (vcov-method), 188
vcov, MultipleGroupClass-method (vcov-method), 188
vcov, SingleGroupClass-method (vcov-method), 188
vcov-method, 188
wald, 83, 95, 102, 110, 189
xyplot, 41