
The AspectJTM Development
Environment Guide

Table of Contents
Introduction to the AspectJ tools. 2

The Eclipse AspectJ implementation . 2

Bytecode weaving, incremental compilation, and memory usage . 2

Classpath, inpath, and aspectpath . 3

ajc, the AspectJ compiler/weaver . 4

Name . 4

Synopsis . 4

Description. 4

Options . 4

File names . 10

Compatibility . 10

Examples . 10

The AspectJ compiler API . 13

Stack Traces and the SourceFile attribute . 13

ajdoc, the AspectJ API documentation generator . 15

Name. 15

Synopsis . 15

Description . 15

Examples . 16

aj, the AspectJ load-time weaving launcher . 17

Name. 17

Synopsis . 17

Description . 17

Examples . 17

AspectJ Ant Tasks . 18

Introduction . 18

Installing Ant Tasks . 18

AjcTask (iajc) . 19

AjcTask (iajc) Options . 19

AjcTask matching parameters specified as nested elements . 24

AjcTask Path-like Structures . 24

Sample of iajc task. 25

Avoiding clean compiles . 26

Programmatically handling compiler messages . 26

Ajc11CompilerAdapter (javac) . 27

Sample of compiler adapter . 27

Compiler adapter compilerarg options . 28

Ajc10 (ajc). 29

Ajc10 (ajc) Options. 29

argfiles - argument list files . 31

Ajc10 parameters specified as nested elements. 31

Sample of ajc task . 31

Isolating problems running the Ant tasks . 32

Known issues with the Ant tasks . 33

Ant task questions and bugs . 33

Load-Time Weaving . 34

Introduction . 34

Weaving class files more than once . 34

Load-time Weaving Requirements . 34

Configuration . 35

Enabling Load-time Weaving . 35

Configuring Load-time Weaving with aop.xml files . 36

Using Concrete Aspects . 38

Using Concrete Aspects to define precedence . 40

Weaver Options . 40

Special cases . 41

Runtime Requirements for Load-time Weaving. 42

Supported Agents . 42

JVMTI . 42

JRockit with Java 1.3/1.4 (use JVMTI on Java 5) . 42

AspectJ version compatibility . 43

Version Compatibility . 43

Java compatibility . 43

Runtime library compatibility . 43

Aspect binary compatibility . 43

Aspect source compatibility . 44

Problems when upgrading to new AspectJ versions. 44

by the AspectJ Team

Copyright (c) 1998-2001 Xerox Corporation, 2002 Palo Alto Research Center, Incorporated, 2003-2005
Contributors. All rights reserved.

This guide describes how to build and deploy AspectJ programs using the AspectJ tools and
facilities. See also the AspectJ Programming Guide, the documentation available with the AspectJ
support available for various integrated development environments (e.g. Eclipse AJDT), and the
most-recent documentation available from the AspectJ project page.

../progguide/index.pdf
https://www.eclipse.org/ajdt/
https://eclipse.org/aspectj

Introduction to the AspectJ tools

The Eclipse AspectJ implementation
The AspectJ Programming Guide describes the AspectJ language. This guide describes the AspectJ
tools produced by the AspectJ team on https://eclipse.org/aspectj. The AspectJ tools include - ajc, the
compiler/weaver; ajdoc, a documentation tool; Ant support for ajc; and load-time weaving support.
These tools are delivered in the library folder of the AspectJ tools installation, mainly in
aspectjtools.jar (tools) and aspectjrt.jar (runtime). This guide does not describe the Eclipse
AspectJ development tools (AJDT). That is produced by another team (sharing some members) on
https://eclipse.org/ajdt. AJDT is delivered as an Eclipse plugin, incorporating the classes in the
AspectJ tools libraries along with the Eclipse plugin interface classes.

Since AspectJ 1.1, the tools have implemented the AspectJ language using bytecode weaving, which
combines aspects and classes to produce .class files that run in a Java VM. There are other ways to
implement the language (e.g., compiler preprocessor, VM support); the AspectJ team has always
tried to distinguish the language and the implementation so other groups could build alternative
implementations of AspectJ. To that end, The AspectJ Programming Guide, Implementation Notes
describes how the Java bytecode form affects language semantics. VM- or source-based
implementations may be free of these limits or impose limits of their own, but most should be fairly
close to what’s possible in Java bytecode.

Please be careful not to confuse any description of weaving or of this implementation of the AspectJ
language with the AspectJ language semantics. If you do, you might find yourself writing code that
doesn’t work as expected when you compile or run it on other systems. More importantly, if you
think about aspects in terms of weaving or of inserting or merging code, then you can lose many of
the design benefits of thinking about an aspect as a single crosscutting module. When the text
below introduces an implementation detail, it will warn if users make mistakes by applying it in
lieu of the language semantics.

Bytecode weaving, incremental compilation, and
memory usage
Bytecode weaving takes classes and aspects in .class form and weaves them together to produce
binary-compatible .class files that run in any Java VM and implement the AspectJ semantics. This
process supports not only the compiler but also IDE’s. The compiler, given an aspect in source form,
produces a binary aspect and runs the weaver. IDE’s can get information about crosscutting in the
program by subscribing to information produced by weaver as a side-effect of weaving.

Incremental compilation involves recompiling only what is necessary to bring the binary form of a
program up-to-date with the source form in the shortest time possible. Incremental weaving
supports this by weaving on a per-class basis. (Some implementations of AOP (including AspectJ 1.0)
make use of whole-program analysis that can’t be done in incremental mode.) Weaving per-class
means that if the source for a pure Java class is updated, only that class needs to be produced.
However, if some crosscutting specification may have been updated, then all code potentially
affected by it may need to be woven. The AspectJ tools are getting better at minimizing this effect,

../progguide/index.html
https://eclipse.org/aspectj
https://eclipse.org/aspectj
../progguide/implementation.html

but it is to some degree unavoidable due to the crosscutting semantics.

Memory usage can seem higher with AspectJ tools. Some aspects are written to potentially affect
many classes, so each class must be checked during the process of weaving. Programmers can
minimize this by writing the crosscutting specifications as narrowly as possible while maintaining
correctness. (While it may seem like more memory, the proper comparison would with with a Java
program that had the same crosscutting, with changes made to each code segment. That would
likely require more memory and more time to recompile than the corresponding AspectJ program.)

Classpath, inpath, and aspectpath

AspectJ introduces two new paths for the binary input to the weaver which you’ll find referenced
in ajc, the AspectJ compiler/weaver, AspectJ Ant Tasks, and Load-Time Weaving.

As in Java, the classpath is where the AspectJ tools resolve types specified in the program. When
running an AspectJ program, the classpath should contain the classes and aspects along with the
AspectJ runtime library, aspectjrt.jar.

In AspectJ tools, the aspectpath is where to find binary aspects. Like the classpath, it can include
archives (.jar and .zip files) and directories containing .class files in a package layout (since binary
aspects are in .class files). These aspects affect other classes in exactly the same way as source-level
aspects, but are themselves not affected. When deploying programs, the original aspects must be
included on the runtime classpath.

In AspectJ tools, the inpath is where to find binary input - aspects and classes that weave and may
be woven. Like the classpath, it can include archives and class directories. Like the aspectpath, it
can include aspects that affect other classes and aspects. However, unlike the aspectpath, an aspect
on the inpath may itself be affected by aspects, as if the source were all compiled together. When
deploying aspects that were put on the inpath, only the woven output should be on the runtime
classpath.

Although types in the inpath and the aspectpath need to be resolved by the AspectJ tools, you
usually do not need to place them on the classpath because this is done automatically by the
compiler/weaver. But when using the WeavingURLClassLoader, your code must explicitly add the
aspects to the classpath so they can be resolved (as you’ll see in the sample code and the aj.bat
script).

The most common mistake is failing to add aspectjrt.jar to the classpath. Also, when weaving with
binary aspects, users forget to deploy the aspect itself along with any classes it requires. A more
subtle mistake is putting a binary aspect (BA) on the inpath instead of the aspectpath. In this case
the aspect BA might be affected by an aspect, even itself; this can cause the program to fail, e.g.,
when an aspect uses exclusion to avoid infinite recursion but fails to exclude advice in aspect BA.

The latter is one of many ways that mistakes in the build process can affect aspects that are written
poorly. Aspects should never rely on the boundaries of the build specification to narrow the scope
of their crosscutting, since the build can be changed without notice to the aspect developer. Careful
users might even avoid relying on the implementation scope, to ensure their AspectJ code will run
on other implementations.

ajc, the AspectJ compiler/weaver

Name
ajc - compiler and bytecode weaver for the AspectJ and Java languages

Synopsis

ajc [option...] [file... | @file... | -argfile file...]

Description
The ajc command compiles and weaves AspectJ and Java source and .class files, producing .class
files compliant with any Java VM (1.1 or later). It combines compilation and bytecode weaving and
supports incremental builds; you can also weave bytecode at run-time using Load-Time Weaving.

The arguments after the options specify the source file(s) to compile. To specify source classes, use
-inpath (below). Files may be listed directly on the command line or in a file. The -argfile file and
@file forms are equivalent, and are interpreted as meaning all the arguments listed in the specified
file.

Note: You must explicitly pass ajc all necessary sources. Be sure to include the source not only for
the aspects or pointcuts but also for any affected types. Specifying all sources is necessary because,
unlike javac, ajc does not search the sourcepath for classes. (For a discussion of what affected types
might be required, see The AspectJ Programming Guide, Implementation Appendix.)

To specify sources, you can list source files as arguments or use the options -sourceroots or -inpath.
If there are multiple sources for any type, the result is undefined since ajc has no way to determine
which source is correct. (This happens most often when users include the destination directory on
the inpath and rebuild.)

Options

-injars <JarList>

deprecated: since 1.2, use -inpath, which also takes directories.

-inpath <Path>

Accept as source bytecode any .class files in the .jar files or directories on Path. The output will
include these classes, possibly as woven with any applicable aspects. Path is a single argument
containing a list of paths to zip files or directories, delimited by the platform-specific path
delimiter.

-aspectpath <Path>

Weave binary aspects from jar files and directories on path into all sources. The aspects should
have been output by the same version of the compiler. When running the output classes, the run

../progguide/implementation.pdf

classpath should contain all aspectpath entries. Path, like classpath, is a single argument
containing a list of paths to jar files, delimited by the platform-specific classpath delimiter.

-argfile <File>

The file contains a line-delimited list of arguments. Each line in the file should contain one
option, filename, or argument string (e.g., a classpath or inpath). Arguments read from the file
are inserted into the argument list for the command. Relative paths in the file are calculated
from the directory containing the file (not the current working directory). Comments, as in Java,
start with // and extend to the end of the line. Options specified in argument files may override
rather than extending existing option values, so avoid specifying options like -classpath in
argument files unlike the argument file is the only build specification. The form @file is the
same as specifying -argfile file.

-outjar <output.jar>

Put output classes in zip file output.jar.

-outxml

Generate aop.xml file for load-time weaving with default name.

-outxmlfile <custom/aop.xml>

Generate aop.xml file for load-time weaving with custom name.

-incremental

Run the compiler continuously. After the initial compilation, the compiler will wait to recompile
until it reads a newline from the standard input, and will quit when it reads a 'q'. It will only
recompile necessary components, so a recompile should be much faster than doing a second
compile. This requires -sourceroots.

-sourceroots <DirPaths>

Find and build all .java or .aj source files under any directory listed in DirPaths. DirPaths, like
classpath, is a single argument containing a list of paths to directories, delimited by the platform-
specific classpath delimiter. Required by -incremental.

-xmlConfigured <files>

Configure the compile-time weaving (CTW) process, if you wish to impose non-standard
limitations, e.g. a list of aspects to use (if not all), global and per-aspect scopes for the weaver
(target packages and classes to exclude or include). This option also needs an .xml file on the
command line, optionally multiple ones to be logically merged into one weaver configuration.
Example:

<aspectj>
 <!-- From all aspects found, only use the ones listed here -->
 <aspects>
 <!-- Only weave class org.acme.app.B -->
 <aspect name="a.b.OneAspect" scope="org.acme.app.B"/>
 <!-- Only weave classes in package org.acme and its sub-packages -->
 <aspect name="c.d.TwoAspect" scope="org.acme..*"/>
 <!-- Weave all classes, unless globally excluded -->

 <aspect name="e.f.ThreeAspect"/>
 <!-- Weave all classes below org.acme.service, but not in the audit sub-package
-->
 <aspect name="e.f.FourAspect" scope="org.acme.service..* AND !*..audit.*"/>
 <!-- Weave all controllers and services -->
 <aspect name="e.f.FiveAspect" scope="*..*Controller || *..*Service"/>
 </aspects>
 <weaver>
 <!-- Globally exclude classes in package org.acme.internal and its sub-packages
from weaving -->
 <exclude within="org.acme.internal..*"/>
 <!-- This has **no effect**, use per-aspect scopes instead -->
 <include within="com.xyz..*"/>
 </weaver>
</aspectj>

Please note, that -xmlConfigured works similarly to load-time weaving (LTW) configuration with
aop.xml, but not 100% identically:

• There is no magical file name like aop.xml for LTW, i.e. an XML configuration file for CTW
needs to be specified on the command line explicitly.

• In the <weaver> section, <include within="…"/> is ignored (see example above), because in
CTW mode all classes the compiler can see are implicitly included in weaving, unless
explicitly excluded.

Limitations which apply to both LTW and CTW modes include:

• Scopes and excludes only affect regular pointcuts (e.g. method interception), not ITDs. The
latter will always be applied and are unaffected by XML configuration.

• When using logical operators, you cannot write && in XML. Instead, use AND as a replacement.
The operators || and ! can be used normally. Complex expressions like (A||B||C) AND !D are
also permitted.

• If you want to apply a scope to an aspect extending an abstract base aspect, you need to list
and scope both aspects in the XML file.

-crossrefs

Generate a build .ajsym file into the output directory. Used for viewing crosscutting references
by tools like the AspectJ Browser.

-emacssym

Generate .ajesym symbol files for emacs support (deprecated).

-Xlint

Same as -Xlint:warning (enabled by default)

-Xlint:{level}

Set default level for messages about potential programming mistakes in crosscutting code.
{level} may be ignore, warning, or error. This overrides entries in

org/aspectj/weaver/XlintDefault.properties from aspectjtools.jar, but does not override levels set
using the -Xlintfile option.

-Xlintfile <PropertyFile>

Specify properties file to set levels for specific crosscutting messages. PropertyFile is a path to a
Java .properties file that takes the same property names and values as
org/aspectj/weaver/XlintDefault.properties from aspectjtools.jar, which it also overrides.

-help

Emit information on compiler options and usage

-version

Emit the version of the AspectJ compiler

-classpath <Path>

Specify where to find user class files. Path is a single argument containing a list of paths to zip
files or directories, delimited by the platform-specific path delimiter.

-bootclasspath <Path>

Override location of VM’s bootclasspath for purposes of evaluating types when compiling. Path
is a single argument containing a list of paths to zip files or directories, delimited by the
platform-specific path delimiter.

-extdirs <Path>

Override location of VM’s extension directories for purposes of evaluating types when
compiling. Path is a single argument containing a list of paths to directories, delimited by the
platform-specific path delimiter.

-d <Directory>

Specify where to place generated .class files. If not specified, <Directory> defaults to the current
working dir.

-source <[1.3 to 22]>

Set source file Java language level

-target <[1.3 to 22]>

Set classfile Java bytecode level

-<[1.3 to 22]>

Set compiler compliance level. Implies identical -source and -target levels. E.g., -11 implies
-source 11 and -target 11.

-nowarn

Emit no warnings (equivalent to -warn:none) This does not suppress messages generated by
declare warning or Xlint.

-warn: <items>

Emit warnings for any instances of the comma-delimited list of questionable code (e.g.

-warn:unusedLocals,deprecation):

constructorName method with constructor name
packageDefaultMethod attempt to override package-default method
deprecation usage of deprecated type or member
maskedCatchBlocks hidden catch block
unusedLocals local variable never read
unusedArguments method argument never read
unusedImports import statement not used by code in file
none suppress all compiler warnings

-warn:none does not suppress messages generated by declare warning or Xlint.

-deprecation

Same as -warn:deprecation

-noImportError

Emit no errors for unresolved imports

-proceedOnError

Keep compiling after error, dumping class files with problem methods

-g<:[lines,vars,source]>

debug attributes level, that may take three forms:

-g all debug info ('-g:lines,vars,source')
-g:none no debug info
-g:{items} debug info for any/all of [lines, vars, source], e.g.,
 -g:lines,source

-preserveAllLocals

Preserve all local variables during code generation (to facilitate debugging).

-referenceInfo

Compute reference information.

-encoding <format>

Specify default source encoding format. Specify custom encoding on a per-file basis by suffixing
each input source file/folder name with '[encoding]'.

-verbose

Emit messages about accessed/processed compilation units

-showWeaveInfo

Emit messages about weaving

-log <file>

Specify a log file for compiler messages.

-progress

Show progress (requires -log mode).

-time

Display speed information.

-noExit

Do not call System.exit(n) at end of compilation (n=0 if no error)

-repeat <N>

Repeat compilation process N times (typically to do performance analysis).

-XterminateAfterCompilation

Causes compiler to terminate before weaving

-XaddSerialVersionUID

Causes the compiler to calculate and add the SerialVersionUID field to any type implementing
Serializable that is affected by an aspect. The field is calculated based on the class before
weaving has taken place.

-Xreweavable[:compress]

(Experimental - deprecated as now default) Runs weaver in reweavable mode which causes it to
create woven classes that can be rewoven, subject to the restriction that on attempting a
reweave all the types that advised the woven type must be accessible.

-XnoInline

(Experimental) do not inline around advice

-XincrementalFile <file>

(Experimental) This works like incremental mode, but using a file rather than standard input to
control the compiler. It will recompile each time file is changed and and halt when file is
deleted.

-XserializableAspects

(Experimental) Normally it is an error to declare aspects Serializable. This option removes that
restriction.

-XnotReweavable

(Experimental) Create class files that can’t be subsequently rewoven by AspectJ.

-Xajruntimelevel:1.2, ajruntimelevel:1.5

(Experimental) Allows code to be generated that targets a 1.2 or a 1.5 level AspectJ runtime
(default 1.5)

File names

ajc accepts source files with either the .java extension or the .aj extension. We normally use .java
for all of our files in an AspectJ system — files that contain aspects as well as files that contain
classes. However, if you have a need to mechanically distinguish files that use AspectJ’s additional
functionality from those that are pure Java we recommend using the .aj extension for those files.

We’d like to discourage other means of mechanical distinction such as naming conventions or sub-
packages in favor of the .aj extension.

• Filename conventions are hard to enforce and lead to awkward names for your aspects. Instead
of TracingAspect.java we recommend using Tracing.aj (or just Tracing.java) instead.

• Sub-packages move aspects out of their natural place in a system and can create an artificial
need for privileged aspects. Instead of adding a sub-package like aspects we recommend using
the .aj extension and including these files in your existing packages instead.

Compatibility

AspectJ is a compatible extension to the Java programming language. The AspectJ compiler adheres
to the The Java Language Specification, Second Edition and to the The Java Virtual Machine
Specification, Second Edition and runs on any Java 2 compatible platform. The code it generates
runs on any Java 1.1 or later compatible platform. For more information on compatibility with Java
and with previous releases of AspectJ, see Version Compatibility.

Examples

Compile two files:

ajc HelloWorld.java Trace.java

To avoid specifying file names on the command line, list source files in a line-delimited text argfile.
Source file paths may be absolute or relative to the argfile, and may include other argfiles by @-
reference. The following file sources.lst contains absolute and relative files and @-references:

Gui.java
/home/user/src/Library.java
data/Repository.java
data/Access.java
@../../common/common.lst
@/home/user/src/lib.lst
view/body/ArrayView.java

Compile the files using either the -argfile or @ form:

ajc -argfile sources.lst
ajc @sources.lst

https://java.sun.com/docs/books/jls/index.html
https://java.sun.com/docs/books/vmspec/index.html
https://java.sun.com/docs/books/vmspec/index.html

Argfiles are also supported by jikes and javac, so you can use the files in hybrid builds. However,
the support varies:

• Only ajc accepts command-line options

• Jikes and Javac do not accept internal @argfile references.

• Jikes and Javac only accept the @file form on the command line.

Bytecode weaving using -inpath: AspectJ 1.2 supports weaving .class files in input zip/jar files and
directories. Using input jars is like compiling the corresponding source files, and all binaries are
emitted to output. Although Java-compliant compilers may differ in their output, ajc should take as
input any class files produced by javac, jikes, eclipse, and, of course, ajc. Aspects included in -inpath
will be woven into like other .class files, and they will affect other types as usual.

Aspect libraries using -aspectpath: AspectJ 1.1 supports weaving from read-only libraries
containing aspects. Like input jars, they affect all input; unlike input jars, they themselves are not
affected or emitted as output. Sources compiled with aspect libraries must be run with the same
aspect libraries on their classpath.

The following example builds the tracing example in a command-line environment; it creates a
read-only aspect library, compiles some classes for use as input bytecode, and compiles the classes
and other sources with the aspect library.

The tracing example is in the AspectJ distribution ({aspectj}/doc/examples/tracing). This uses the
following files:

aspectj1.1/
 bin/
 ajc
 lib/
 aspectjrt.jar
 examples/
 tracing/
 Circle.java
 ExampleMain.java
 lib/
 AbstractTrace.java
 TraceMyClasses.java
 notrace.lst
 Square.java
 tracelib.lst
 tracev3.lst
 TwoDShape.java
 version3/
 Trace.java
 TraceMyClasses.java

Below, the path separator is taken as ";", but file separators are "/". All commands are on one line.
Adjust paths and commands to your environment as needed.

Setup the path, classpath, and current directory:

cd examples
export ajrt=../lib/aspectjrt.jar
export CLASSPATH="$ajrt"
export PATH="../bin:$PATH"

Build a read-only tracing library:

ajc -argfile tracing/tracelib.lst -outjar tracelib.jar

Build the application with tracing in one step:

ajc -aspectpath tracelib.jar -argfile tracing/notrace.lst -outjar tracedapp.jar

Run the application with tracing:

java -classpath "$ajrt;tracedapp.jar;tracelib.jar" tracing.ExampleMain

Build the application with tracing from binaries in two steps:

• (a) Build the application classes (using javac for demonstration’s sake):

mkdir classes
javac -d classes tracing/*.java
jar cfM app.jar -C classes .

• (b) Build the application with tracing:

ajc -inpath app.jar -aspectpath tracelib.jar -outjar tracedapp.jar

Run the application with tracing (same as above):

java -classpath "$ajrt;tracedapp.jar;tracelib.jar" tracing.ExampleMain

Run the application without tracing:

java -classpath "app.jar" tracing.ExampleMain

The AspectJ compiler API

The AspectJ compiler is implemented completely in Java and can be called as a Java class. The only
interface that should be considered public are the public methods in org.aspectj.tools.ajc.Main.
E.g., main(String[] args) takes the the standard ajc command line arguments. This means that an
alternative way to run the compiler is

java org.aspectj.tools.ajc.Main [option...] [file...]

To access compiler messages programmatically, use the methods setHolder(IMessageHolder holder)
and/or run(String[] args, IMessageHolder holder). ajc reports each message to the holder using
IMessageHolder.handleMessage(..). If you just want to collect the messages, use MessageHandler as
your IMessageHolder. For example, compile and run the following with aspectjtools.jar on the
classpath:

import org.aspectj.bridge.*;
import org.aspectj.tools.ajc.Main;
import java.util.Arrays;

public class WrapAjc {
 public static void main(String[] args) {
 Main compiler = new Main();
 MessageHandler m = new MessageHandler();
 compiler.run(args, m);
 IMessage[] ms = m.getMessages(null, true);
 System.out.println("messages: " + Arrays.asList(ms));
 }
}

Stack Traces and the SourceFile attribute

Unlike traditional java compilers, the AspectJ compiler may in certain cases generate classfiles from
multiple source files. Unfortunately, the original Java class file format does not support multiple
SourceFile attributes. In order to make sure all source file information is available, the AspectJ
compiler may in some cases encode multiple filenames in the SourceFile attribute. When the Java
VM generates stack traces, it uses this attribute to specify the source file.

(The AspectJ 1.0 compiler also supports the .class file extensions of JSR-45. These permit compliant
debuggers (such as jdb in Java 1.4.1) to identify the right file and line even given many source files
for a single class. JSR-45 support is planned for ajc in AspectJ 1.1, but is not in the initial release. To
get fully debuggable .class files, use the -XnoInline option.)

Probably the only time you may see this format is when you view stack traces, where you may
encounter traces of the format

java.lang.NullPointerException

 at Main.new$constructor_call37(Main.java;SynchAspect.java[1k]:1030)

where instead of the usual

File:LineNumber

format, you see

File0;File1[Number1];File2[Number2] ... :LineNumber

In this case, LineNumber is the usual offset in lines plus the "start line" of the actual source file.
That means you use LineNumber both to identify the source file and to find the line at issue. The
number in [brackets] after each file tells you the virtual "start line" for that file (the first file has a
start of 0).

In our example from the null pointer exception trace, the virtual start line is 1030. Since the file
SynchAspect.java "starts" at line 1000 [1k], the LineNumber points to line 30 of SynchAspect.java.

So, when faced with such stack traces, the way to find the actual source location is to look through
the list of "start line" numbers to find the one just under the shown line number. That is the file
where the source location can actually be found. Then, subtract that "start line" from the shown
line number to find the actual line number within that file.

In a class file that comes from only a single source file, the AspectJ compiler generates SourceFile
attributes consistent with traditional Java compilers.

ajdoc, the AspectJ API documentation
generator

Name
ajdoc - generate HTML API documentation, including crosscutting structure

Synopsis

ajdoc [-bootclasspath classpathlist] [-classpath classpathlist] [-d path] [-help]
[-package] [-protected] [-private] [-public] [-overview overviewFile] [-sourcepath
sourcepathlist] [-verbose] [-version] [sourcefiles... | packages... | @file... |
-argfile file...] [ajc options]

Description
ajdoc renders HTML documentation for AspectJ constructs as well as the Java constructs that
javadoc renders. In addition ajdoc displays the crosscutting nature in the form of links. That means,
for example, that you can see everything affecting a method when reading the documentation for
the method.

To run ajdoc, use one of the scripts in the AspectJ bin directory. The ajdoc implementation builds on
Sun’s javadoc command line tool, and you use it in the same way with many of the same options
(javadoc options are not documented here; for more information on javadoc usage, see the Javadoc
homepage.)

As with ajc (but unlike javadoc), you pass ajdoc all your aspect source files and any files containing
types affected by the aspects; it’s often easiest to just pass all the .java and .aj files in your system.
Unlike ajc, ajdoc will try to find package sources using the specified sourcepath if you list packages
on the command line.

To provide an argfile listing the source files, you can use use the same argfile (@filename)
conventions as with ajc. For example, the following documents all the source files listed in
argfile.lst, sending the output to the docDir output directory.

ajdoc -d docDir @argfile.lst

See ajc, the AspectJ compiler/weaver for details on the text file format.

ajdoc honours ajc options. See the ajc documentation for details on these options.

ajdoc currently requires the tools.jar from J2SE 1.3 to be on the classpath. Normally the scripts set
this up, assuming that your JAVA_HOME variable points to an appropriate installation of Java. You
may need to provide this jar when using a different version of Java or a JRE.

https://java.sun.com/j2se/javadoc/
https://java.sun.com/j2se/javadoc/

Examples
• Change into the examples directory.

• Type mkdir doc to create the destination directory for the documentation.

• Type ajdoc -private -d doc spacewar coordination to generate the documentation. (Use -private
to get all members, since many of the interesting ones in spacewar are not public.)

• Type ajdoc -private -d doc @spacewar/demo.lst to use the argfile associated with Spacewar.

• To view the documentation, open the file index.html in the doc directory using a web browser.

aj, the AspectJ load-time weaving launcher

Name
aj - command-line launcher for basic load-time weaving

Synopsis
aj [Options] [arg…]

Description
The aj command runs Java programs in Java 1.4 or later by setting up WeavingURLClassLoader as the
system class loader, to do load-time bytecode weaving.

The arguments are the same as those used to launch the Java program. Users should define the
environment variables CLASSPATH and ASPECTPATH.

For more information and alternatives for load-time weaving, see Load-Time Weaving.

Examples
Use ajc to build a library, then weave at load time

REM compile library
${ASPECTJ_HOME}\bin\ajc.bat -outjar lib\aspects.jar @aspects.lst

REM run, weaving into application at load-time set
ASPECTPATH=lib\aspects.jar set CLASSPATH=app\app.jar
${ASPECTJ_HOME}\bin\aj.bat com.company.app.Main "Hello, World!"

AspectJ Ant Tasks

Introduction
AspectJ contains a compiler, ajc, that can be run from Ant. Included in the aspectjtools.jar are Ant
binaries to support three ways of running the compiler:

1. AjcTask (iajc), a task to run the AspectJ post-1.1 compiler, which supports all the eclipse and ajc
options, including incremental mode.

2. Ajc11CompilerAdapter (javac), an adapter class to run the new compiler using Javac tasks by
setting the build.compiler property

3. Ajc10 (ajc), a task to run build scripts compatible with the AspectJ 1.0 tasks

This describes how to install and use the tasks and the adapter. For an example Ant script, see
examples/build.xml.

Installing Ant Tasks
Install Jakarta Ant 1.5.1: Please see the official Jakarta Ant website for more information and the
1.5.1 distribution. This release is source-compatible with Ant 1.3 and Ant 1.4, but the task sources
must be compiled with those versions of the Ant libraries to be used under those versions of Ant.
Sources are available under the Eclipse Public License v 2.0 at https://eclipse.org/aspectj.

In Ant 1.5, third-party tasks can be declared using a taskdef entry in the build script, to identify the
name and classes. When declaring a task, include the aspectjtools.jar either in the taskdef
classpath or in ${ANT_HOME}/lib where it will be added to the system class path by the ant script. You
may specify the task script names directly, or use the "resource" attribute to specify the default
names:

<taskdef resource="org/aspectj/tools/ant/taskdefs/aspectjTaskdefs.properties"/>

The current resource file retains the name "ajc" for the Ajc10 task, and uses "iajc" for the AspectJ
post-1.1 task.

In Ant 1.6, third-party tasks are declared in their own namespace using antlib.xml. For example,
the following script would build and run the spacewar example, if you put the script in the
examples directory and aspectjtools.jar in the ${ANT_HOME}/lib directory.

<project name="aspectj-ant1.6" default="spacewar"
 xmlns:aspectj="antlib:org.aspectj" basedir=".">
 <target name="spacewar">
 <aspectj:iajc
 argfiles="spacewar/debug.lst"
 outjar="spacewar.jar"
 classpath="../../lib/aspectjrt.jar"
 />

../examples/build.xml
https://eclipse.org/aspectj

 <java classname="spacewar.Game"
 classpath="spacewar.jar:../../lib/aspectjrt.jar"/>
 </target>
</project>

For more information on using Ant, please refer to Jakarta’s documentation on integrating user-
defined Ant tasks into builds.

AjcTask (iajc)
This task uses the AspectJ post-1.1 compiler ajc. The AspectJ compiler can be used like Javac to
compile Java sources, but it can also compile AspectJ sources or weave binary aspects with Java
bytecode. It can run in normal "batch" mode or in an "incremental" mode, where it only recompiles
files it has to revisit. For more information on ajc, see ajc, the AspectJ compiler/weaver. Unlike
Javac or the Javac Ant task, this task always compiles the specified files since aspects can apply to
other (updated) files. For a workaround, see Avoiding clean compiles.

Beyond the normal ajc compiler options, this task also supports an experimental option for an
incremental "tag" file, and it can copy resources from source directories or input jars to the output
jar or directory.

This task is named iajc to avoid conflict with the 1.0 task ajc.

AjcTask (iajc) Options

The following tables list the supported parameters. For any parameter specified as a Path, a single
path can be specified directly as an attribute, multiple paths can be specified using a nested
element of the same name, and a common path can be reused by defining it as a global and passing
the id to the corresponding {name}ref attribute. See Path below for more details.

Most attributes and nested elements are optional. The compiler requires that the same version of
aspectjrt.jar be specified on the classpath, and that some sources be be specified (using one or
more of sourceroots, injars, inpath, argfiles, and/or srcdir (with patterns)). When in incremental
mode, only sourceroots may be specified.

Boolean parameters default to false unless otherwise stated.

AjcTask (iajc) options for specifying sources

Attribute Description

argfiles, argfilesRef (Path) An argument file contains a list of arguments
read by the compiler. Each line is read into one
element of the argument array and may include
another argfile by reference.

sourceRoots, sourceRootsRef (Path) Directories containing source files (ending with
.java or .aj) to compile.

Attribute Description

srcdir (Path) Base directory of sources to compile, assuming
there are nested matches. This approach uses
the Ant process for matching .java files and is
not compatible with incremental mode. Unless
using filters to limit the sources included, use
sourceroots instead.

injars, injarsRef (Path) Deprecated - use inpath instead. Read .class files
for bytecode weaving from zip files (only).

inpath, inpathRef (Path) Read .class files for bytecode weaving from
directories or zip files (like classpath).

classpath, classpathRef (Path) The classpath used by the sources being
compiled. When compiling aspects, include the
same version of the aspectjrt.jar.

bootclasspath, bootclasspathRef (Path) The bootclasspath specifies types to use instead
of the invoking VM’s when seeking types during
compilation.

extDirs, extDirsRef (Path) The extension directories to use instead of those
in the invoking VM when seeking types during
compilation.

aspectPath, aspectPathRef (Path) Similar to classpath, aspectpath contains read-
only, binary aspect libraries that are woven into
sources but not included in the output.
aspectpath accepts jar/zip files (but, unlike
classpath, not directories).

AjcTask (iajc) options for specifying output

Attribute Description

destDir The directory in which to place the generated
class files. Only one of destDir and outJar may
be set.

outJar The zip file in which to place the generated
output class files. Only one of destDir and outJar
may be set.

copyInjars (Deprecated/ignored; ajc does this.) If true, copy
all non-.class files from input jar(s) to the output
jar or destination directory after the compile (or
incremental compile) completes. In forked
mode, this copies only after the process
completes, not after incremental compiles.

Attribute Description

sourceRootCopyFilter When set, copy all files from the sourceroot
directories to the output jar or destination
directory except those specified in the filter
pattern. The pattern should be compatible with
an Ant fileset excludes filter; when using this,
most developers pass /CVS/,/.java to exclude
any CVS directories or source files. See
inpathDirCopyFilter. Requires destDir or outJar.

inpathDirCopyFilter When set, copy all files from the inpath
directories to the output jar or destination
directory except those specified in the filter
pattern. The pattern should be compatible with
an Ant fileset excludes filter; when using this,
most developers pass /CVS/,/.java,/.class to
exclude any CVS directories, source files, or
unwoven .class files. (If/.class is not
specified, it will be prepended to the filter.) See
sourceRootCopyFilter. (Note that ajc itself copies
all resources from input jar/zip files on the
inpath.) Requires destDir or outJar.

AjcTask (iajc) options for specifying compiler behavior

Attribute Description

fork Run process in another VM. This gets the forking
classpath either explicitly from a forkclasspath
entry or by searching the task or system/Ant
classpath for the first readable file with a name
of the form aspectj{-}tools{.*}.jar. When
forking you can specify the amount of memory
used with maxmem. Fork cannot be used in
incremental mode, unless using a tag file.

forkclasspath, forkclasspathRef (Path) Specify the classpath to use for the compiler
when forking.

maxmem The maximum memory to use for the new VM
when fork is true. Values should have the same
form as accepted by the VM, e.g., "128m".

incremental incremental mode: Build once, then recompile
only required source files when user provides
input. Requires that source files be specified
only using sourceroots. Incompatible with
forking.

Attribute Description

tagfile incremental mode: Build once, then recompile
only required source files when the tag file is
updated, finally exiting when tag file is deleted.
Requires that source files be specified only using
sourceroots.

X Set experimental option(s), using comma-
separated list of accepted options Options should
not contain the leading X. Some commonly-used
experimental options have their own entries.
The other permitted ones (currently) are
serializableAspects, incrementalFile, lazyTjp,
reweavable, notReweavable, noInline,
terminateAfterCompilation, ajruntimelevel:1.2,
and ajruntimelevel:1.5. Of these, some were
deprecated in AspectJ 5 (reweavable,
terminateAfterCompilation, etc.).

XterminateAfterCompilation Terminates before the weaving process,
dumping out unfinished class files.

AjcTask (iajc) options for specifying compiler side-effects and messages

Attribute Description

emacssym If true, emit .ajesym symbol files for Emacs
support.

crossref If true, emit .ajsym file into the output directory.

verbose If true, log compiler verbose messages as
Project.INFO during the compile.

logCommand If true, log compiler command elements as
Project.INFO (rather than the usual
Project.VERBOSE level).

Xlistfileargs If true, emit list of file arguments during the
compile (but behaves now like verbose).

version If true, do not compile - just print AspectJ
version.

help If true, just print help for the command-line
compiler.

Xlintwarnings Same as xlint:warning: if true, set default level
of all language usage messages to warning.

Xlint Specify default level of all language usage
messages to one of [error warning ignore].

Attribute Description

XlintFile Specify property file containing name:level
associations setting level for language messages
emitted during compilation. Any levels set
override the default associations in
org/aspectj/weaver/XLintDefault.properties.

failonerror If true, throw BuildException to halt build if
there are any compiler errors. If false, continue
notwithstanding compile errors. Defaults to
true.

messageHolderClass Specify a class to use as the message holder for
the compile process. The entry must be a fully-
qualified name of a class resolveable from the
task classpath complying with the
org.aspectj.bridge.IMessageHolder interface and
having a public no-argument constructor.

showWeaveInfo If true, emit weaver messages. Defaults to false.

AjcTask (iajc) options for specifying Eclipse compiler options

Attribute Description

nowarn If true, same as warn:none.

deprecation If true, same as warn:deprecation

warn One or more comma-separated warning
specifications from [constructorName
packageDefaultMethod deprecation,
maskedCatchBlocks unusedLocals
unusedArguments, unusedImports syntheticAccess
assertIdentifier].

debug If true, same as debug:lines,vars,source

debugLevel One or more comma-separated debug
specifications from [lines vars source].

PreserveAllLocals If true, code gen preserves all local variables (for
debug purposes).

noimporterror If true, emit no errors for unresolved imports.

referenceinfo If true, compute reference info.

log File to log compiler messages to.

encoding Default source encoding format (per-file
encoding not supported in Ant tasks).

proceedOnError If true, keep compiling after errors encountered,
dumping class files with problem methods.

progress If true, emit progress (requires log).

Attribute Description

time If true, display speed information.

target Specify target class file format as one of [1.1
1.2]. Defaults to 1.1 class file.

source Set source compliance level to one of [1.3 1.4
1.5] (default is 1.4). 1.3 implies -source 1.3 and
-target 1.1. 1.4 implies -source 1.4 and -target 1.2.
1.5 implies -source 1.5 and -target 1.5.

source Set source assertion mode to one of [1.3 1.4].
Default depends on compliance mode.

AjcTask matching parameters specified as nested elements

This task forms an implicit FileSet and supports all attributes of fileset (dir becomes srcdir) as well
as the nested include, exclude, and patternset elements. These can be used to specify source files.
However, it is better to use sourceroots to specify source directories unless using filters to exclude
some files from compilation.

AjcTask Path-like Structures

Some parameters are path-like structures containing one or more elements; these are sourceroots,
argfiles, injars, inpath, classpath, bootclasspath, forkclasspath, and aspectpath. In all cases, these
may be specified as nested elements, something like this:

<iajc {attributes..} />
 <{name}>
 <pathelement path="{first-location}"/>
 <pathelement path="{second-location}"/>
 ...
 <{name}>
 ...
</iajc>

As with other Path-like structures, they may be defined elsewhere and specified using the refid
attribute:

<path id="aspect.path">
 <pathelement path="${home}/lib/persist.jar"/>
 <pathelement path="${home}/lib/trace.jar"/>
</path>
...
<iajc {attributes..} />
 <aspectpath refid="aspect.path"/>
 ...
</iajc>

The task also supports an attribute {name}ref for each such parameter. E.g., for aspectpath:

<iajc {attributes..} aspectpathref="aspect.path"/>

Sample of iajc task

A minimal build script defines the task and runs it, specifying the sources:

<project name="simple-example" default="compile" >
 <taskdef
 resource="org/aspectj/tools/ant/taskdefs/aspectjTaskdefs.properties">
 <classpath>
 <pathelement location="${home.dir}/tools/aspectj/lib/aspectjtools.jar"/>
 </classpath>
 </taskdef>

 <target name="compile" >
 <iajc sourceroots="${home.dir}/ec/project/src"
 classpath="${home.dir}/tools/aspectj/lib/aspectjrt.jar"/>
 </target>
</project>

Below is script with most everything in it. The compile process…

1. Runs in incremental mode, recompiling when the user hits return;

2. Reads all the source files from two directories;

3. Reads binary .class files from input jar and directory;

4. Uses a binary aspect library for persistence;

5. Outputs to an application jar; and

6. Copies resources from the source directories and binary input jar and directories to the
application jar.

When this target is built, the compiler will build once and then wait for input from the user.
Messages are printed as usual. When the user has quit, then this runs the application.

<target name="build-test" >
 <iajc outjar="${home.dir}/output/application.jar"
 sourceRootCopyFilter="**/CVS/*,**/*.java"
 inpathDirCopyFilter="**/CVS/*,**/*.java,**/*.class"
 incremental="true" >
 <sourceroots>
 <pathelement location="${home.dir}/ec/project/src"/>
 <pathelement location="${home.dir}/ec/project/testsrc"/>
 </sourceroots>
 <inpath>

 <pathelement location="${home.dir}/build/module.jar"/>
 <pathelement location="${home.dir}/build/binary-input"/>
 </inpath>
 <aspectpath>
 <pathelement location="${home.dir}/ec/int/persist.jar"/>
 </aspectpath>
 <classpath>
 <pathelement location="${home.dir}/tools/aspectj/lib/aspectjrt.jar"/>
 </classpath>
 </iajc>

 <java classname="org.smart.app.Main">
 <classpath>
 <pathelement location="${home.dir}/tools/aspectj/lib/aspectjrt.jar"/>
 <pathelement location="${home.dir}/ec/int/persist.jar"/>
 <pathelement location="${home.dir}/output/application.jar"/>
 </classpath>
 </java>
</target>

For an example of a build script, see ../examples/build.xml.

Avoiding clean compiles

Unlike javac, the ajc compiler always processes all input because new aspects can apply to updated
classes and vice-versa. However, in the case where no files have been updated, there is no reason to
recompile sources. One way to implement that is with an explicit dependency check using the
uptodate task:

<target name="check.aspects.jar">
 <uptodate property="build.unnecessary"
 targetfile="${aspects.module-jar}" >
 <srcfiles dir="${src1}" includes="**/*.aj"/>
 <srcfiles dir="${src2}/" includes="**/*.aj"/>
 </uptodate>
</target>

<target name="compile.aspects" depends="prepare,check.aspects.jar"
 unless="build.unnecessary">
 <iajc ...

When using this technique, be careful to verify that binary input jars are themselves up-to-date
after they would have been modified by any build commands.

Programmatically handling compiler messages

Users may specify a message holder to which the compiler will pass all messages as they are
generated. This will override all of the normal message printing, but does not prevent the task from

failing if exceptions were thrown or if failonerror is true and the compiler detected errors in the
sources.

Handling messages programmatically could be useful when using the compiler to verify code. If
aspects consist of declare [error|warning], then the compiler can act to detect invariants in the
code being processed. For code to compare expected and actual messages, see the AspectJ testing
module (which is not included in the binary distribution).

Ajc11CompilerAdapter (javac)
This CompilerAdapter can be used in javac task calls by setting the build.compiler property. This
enables users to to easily switch between the Javac and AspectJ compilers. However, because there
are differences in source file handling between the Javac task and the ajc compiler, not all Javac
task invocations can be turned over to iajc. However, ajc can compile anything that Javac can, so it
should be possible for any given compile job to restate the Javac task in a way that can be handled
by iajc/ajc.

Sample of compiler adapter

To build using the adapter, put the aspectjtools.jar on the system/ant classpath (e.g., in
${ANT_HOME}/lib) and define the build.compiler property as the fully-qualified name of the class,
org.aspectj.tools.ant.taskdefs.Ajc11CompilerAdapter.

The AspectJ compiler should run for any compile using the Javac task (for options, see the Ant
documentation for the Javac task). For example, the call below passes all out-of-date source files in
the src/org/aspectj subdirectories to the ajc command along with the destination directory:

-- command:

 cp aspectj1.1/lib/aspectjtools.jar ant/lib
 ant/bin/ant -Dbuild.compiler=org.aspectj.tools.ant.taskdefs.Ajc11CompilerAdapter
...

-- task invocation in the build script:

 <javac srcdir="src" includes="org/aspectj/**/*.java" destdir="dest" />

To pass ajc-specific arguments, use a compilerarg entry.

-- command

 Ant -Dbuild.compiler=org.aspectj.tools.ant.taskdefs.Ajc11CompilerAdapter

-- build script

 <property name="ajc"
 value="org.aspectj.tools.ant.taskdefs.Ajc11CompilerAdapter"/>

 <javac srcdir="src" includes="org/aspectj/**/*.java" destdir="dest" >
 <compilerarg compiler="${ajc}" line="-argfile src/args.lst"/>
 <javac/>

The Javac task does special handling of source files that can interfere with ajc. It removes any files
that are not out-of-date with respect to the corresponding .class files. But ajc requires all source
files, since an aspect may affect a source file that is not out of date. (For a solution to this, see the
build.compiler.clean property described below.) Conversely, developers sometimes specify a source
directory to javac, and let it search for files for types it cannot find. AspectJ will not do this kind of
searching under the source directory (since the programmer needs to control which sources are
affected). (Don’t confuse the source directory used by Javac with the source root used by ajc; if you
specify a source root to ajc, it will compile any source file under that source root (without exception
or filtering).) To replace source dir searching in Javac, use an Ant filter to specify the source files.

Compiler adapter compilerarg options

The adapter supports any ajc command-line option passed using compilerarg, as well as the
following options available only in AjcTask. Find more details on the following options in AjcTask
(iajc).

• -Xmaxmem: set maximum memory for forking (also settable in javac).

• -Xlistfileargs: list file arguments (also settable in javac).

• -Xfailonerror: throw BuildException on compiler error (also settable in javac).

• -Xmessageholderclass: specify fully-qualified name of class to use as the message holder.

• -Xcopyinjars: copy resources from any input jars to output (default behavior since 1.1.1)

• -Xsourcerootcopyfilter {filter}: copy resources from source directories to output (minus files
specified in filter)

• -Xtagfile {file}: use file to control incremental compilation

• -Xsrcdir {dir}: add to list of ajc source roots (all source files will be included).

Special considerations when using Javac and compilerarg:

• The names above may differ slightly from what you might expect from AjcTask; use these forms
when specifying compilerarg.

• By default the adapter will mimic the Javac task’s copying of resource files by specifying "/CVS/
,/.java,/.aj" for the sourceroot copy filter. To change this behavior, supply your own
value (e.g., "/" to copy nothing).

• Warning - define the system property build.compiler.clean to compile all files, when available.
Javac prunes the source file list of "up-to-date" source files based on the timestamps of
corresponding .class files, and will not compile if no sources are out of date. This is wrong for
ajc which requires all the files for each compile and which may refer indirectly to sources using
argument files.

To work around this, set the global property build.compiler.clean. This tells the compiler
adapter to delete all .class files in the destination directory and re-execute the javac task so

javac can recalculate the list of source files. e.g.,

Ant -Dbuild.compiler=org.aspectj.tools.ant.taskdefs.Ajc11CompilerAdapter
 -Dbuild.compiler.clean=anything ...

Caveats to consider when using this global build.compiler.clean property:

1. If javac believes there are no out-of-date source files, then the adapter is never called and
cannot clean up, and the "compile" will appear to complete successfully though it did
nothing.

2. Cleaning will makes stepwise build processes fail if they depend on the results of the prior
compilation being in the same directory, since cleaning deletes all .class files.

3. This clean process only permits one compile process at a time for each destination directory
because it tracks recursion by writing a tag file to the destination directory.

4. When running incrementally, the clean happens only before the initial compile.

Ajc10 (ajc)
This task handles the same arguments as those used by the AspectJ 1.0 task. This should permit
those with existing build scripts using the Ajc Ant task to continue using the same scripts when
compiling with 1.1. This will list any use of options no longer supported in 1.1 (e.g., lenient, strict,
workingdir, preprocess, usejavac,…), and does not provide access to the new features of AspectJ
1.1. (Developers using AspectJ 1.1 only should upgrade their scripts to use AjcTask instead. This will
not work for AspectJ 1.2 or later.)

Ajc10 (ajc) Options

Most attributes and nested elements are optional. The compiler requires that the same version of
aspectjrt.jar be specified on the classpath, and that some sources be be specified (using one or
more of argfiles and srcdir (with patterns)).

Boolean parameters default to false unless otherwise stated.

Table 1. AjcTask (ajc) options for specifying sources

Attribute Description

srcdir The base directory of the java files. See

destdir The target directory for the output .class files

includes Comma-separated list of patterns of files that
must be included. No files are included when
omitted.

includesfile The path to a file containing include patterns.

excludes Comma-separated list of patterns of files that
must be excluded. No files (except default
excludes) are excluded when omitted.

Attribute Description

excludesfile The path to a file containing exclude patterns.

defaultexcludes If true, then default excludes are used. Default
excludes are used when omitted (i.e., defaults to
true).

classpath, classpathref The classpath to use, optionally given as a
reference to a classpath Path element defined
elsewhere.

bootclasspath, bootclasspathref The bootclasspath to use, optionally given as a
reference to a bootclasspath Path element
defined elsewhere.

extdirs Paths to directories containting installed
extensions.

debug If true, emit debug info in the .class files.

deprecation If true, emit messages about use of deprecated
API.

verbose Emit compiler status messages during the
compile.

version Emit version information and quit.

failonerror If true, throw BuildException to halt build if
there are any compiler errors. If false, continue
notwithstanding compile errors. Defaults to
true.

source Value of -source option - ignored unless 1.4.

Table 2. Parameters ignored by the old ajc taskdef, but now supported or buggy

Attribute Description Supported?

encoding Default encoding of source files. yes

optimize Whether source should be
compiled with optimization.

yes?

target Generate class files for specific
VM version, one of [1.1 1.2].

yes

depend Enables dependency-tracking. no

includeAntRuntime Whether to include the Ant run-
time libraries.

no

includeJavaRuntime Whether to include the run-
time libraries from the
executing VM.

no

threads Multi-threaded compilation no

The following table shows that many of the unique parameters in AspectJ 1.0 are no longer
supported.

Table 3. Parameters unique to ajc

Attribute Description

X deprecated X options include reweavable (on by
default) reweavable:compress (compressed by
default)

emacssym Generate symbols for Emacs IDE support.

argfiles A comma-delimited list of argfiles that contain a
line-delimited list of source file paths (absolute
or relative to the argfile).

argfiles - argument list files

An argument file is a file (usually {file}.lst) containing a list of source file paths (absolute or
relative to the argfile). You can use it to specify all source files to be compiled, which ajc requires to
avoid searching every possible source file in the source path when building aspects. If you specify
an argfile to the ajc task, it will not include all files in any specified source directory (which is the
default behavior for the Javac task when no includes are specified). Conversely, if you specify
excludes, they will be removed from the list of files compiled even if they were specified in an
argument file.

The compiler also accepts arguments that are not source files, but the IDE support for such files
varies, and Javac does not support them. Be sure to include exactly one argument on each line.

Ajc10 parameters specified as nested elements

This task forms an implicit FileSet and supports all attributes of fileset (dir becomes srcdir) as well
as the nested include, exclude, and patternset elements. These can be used to specify source files.

ajc's srcdir, classpath, bootclasspath, extdirs, and jvmarg attributes are path-like structures and can
also be set via nested src, classpath, bootclasspath, extdirs, and jvmargs elements, respectively.

Sample of ajc task

Following is a declaration for the ajc task and a sample invocation that uses the ajc compiler to
compile the files listed in default.lst into the dest dir:

<project name="example" default="compile" >
 <taskdef name="ajc"
 classname="org.aspectj.tools.ant.taskdefs.Ajc10" >
 <!-- declare classes needed to run the tasks and tools -->
 <classpath>
 <pathelement location="${home.dir}/tools/aspectj/lib/aspectjtools.jar"/>
 </classpath>
 </taskdef>

 <target name="compile" >
 <mkdir dir="dest" />
 <ajc destdir="dest" argfiles="default.lst" >
 <!-- declare classes needed to compile the target files -->
 <classpath>
 <pathelement location="${home.dir}/tools/aspectj/lib/aspectjrt.jar"/>
 </classpath>
 </ajc>
 </target>
</project>

This build script snippet

<ajc srcdir="${src}"
 destdir="${build}"
 argfiles="demo.lst"
/>

compiles all .java files specified in the demo.lst and stores the .class files in the ${build} directory.
Unlike the Javac task, the includes attribute is empty by default, so only those files specified in
demo.lst are included.

This next example

<ajc srcdir="${src}"
 destdir="${build}"
 includes="spacewar/*,coordination/*"
 excludes="spacewar/Debug.java"
/>

compiles .java files under the ${src} directory in the spacewar and coordination packages, and
stores the .class files in the ${build} directory. All source files under spacewar/ and coordination/
are used, except Debug.java.

See ../examples/build.xml for an example build script.

Isolating problems running the Ant tasks
If you have problems with the tasks not solved by the documentation, please try to see if you have
the same problems when running ajc directly on the command line.

• If the problem occurs on the command line also, then the problem is not in the task. (It may be
in the tools; please send bug reports.)

• If the problem does not occur on the command line, then it may lie in the parameters you are
supplying in Ant or in the task’s handling of them.

• If the build script looks correct and the problem only occurs when building from Ant, then
please send a report (including your build file, if possible).

Known issues with the Ant tasks

For the most up-to-date information on known problems, see the bug database for unresolved
compiler bugs or taskdef bugs .

When running Ant build scripts under Eclipse 2.x variants, you will get a VerifyError because the
Eclipse Ant support fails to isolate the Ant runtime properly. To run in this context, set up iajc to
fork (and use forkclasspath). Eclipse 3.0 will fork Ant processes to avoid problems like this.

Memory and forking: Users email most often about the ajc task running out of memory. This is not a
problem with the task; some compiles take a lot of memory, often more than similar compiles using
javac.

Forking is now supported in both the Ajc11CompilerAdapter (javac) and AjcTask (iajc), and you can
set the maximum memory available. You can also not fork and increase the memory available to
Ant (see the Ant documentation, searching for ANT_OPTS, the variable they use in their scripts to
pass VM options, e.g., ANT_OPTS=-Xmx128m).

Ant task questions and bugs

For questions, you can send email to aspectj-users@dev.eclipse.org. (Do join the list to participate!)
We also welcome any bug reports, patches, and features; you can submit them to the bug database
at https://bugs.eclipse.org/bugs using the AspectJ product and Ant component.

https://bugs.eclipse.org/bugs
https://bugs.eclipse.org/bugs/buglist.cgi?&product=AspectJ&component=Compiler&bug_status=NEW&bug_status=ASSIGNED&bug_status=REOPENED
https://bugs.eclipse.org/bugs/buglist.cgi?&product=AspectJ&component=Ant&bug_status=NEW&bug_status=ASSIGNED&bug_status=REOPENED
mailto:aspectj-users@dev.eclipse.org
https://bugs.eclipse.org/bugs

Load-Time Weaving

Introduction
The AspectJ weaver takes class files as input and produces class files as output. The weaving
process itself can take place at one of three different times: compile-time, post-compile time, and
load-time. The class files produced by the weaving process (and hence the run-time behaviour of an
application) are the same regardless of the approach chosen.

• Compile-time weaving is the simplest approach. When you have the source code for an
application, ajc will compile from source and produce woven class files as output. The
invocation of the weaver is integral to the ajc compilation process. The aspects themselves may
be in source or binary form. If the aspects are required for the affected classes to compile, then
you must weave at compile-time. Aspects are required, e.g., when they add members to a class
and other classes being compiled reference the added members.

• Post-compile weaving (also sometimes called binary weaving) is used to weave existing class
files and JAR files. As with compile-time weaving, the aspects used for weaving may be in source
or binary form, and may themselves be woven by aspects.

• Load-time weaving (LTW) is simply binary weaving defered until the point that a class loader
loads a class file and defines the class to the JVM. To support this, one or more "weaving class
loaders", either provided explicitly by the run-time environment or enabled through a "weaving
agent" are required.

You may also hear the term "run-time weaving". We define this as the weaving of classes that have
already been defined to the JVM (without reloading those classes). AspectJ 5 does not provide
explicit support for run-time weaving although simple coding patterns can support dynamically
enabling and disabling advice in aspects.

Weaving class files more than once

As of AspectJ 5 aspects (code style or annotation style) and woven classes are reweavable by
default. If you are developing AspectJ applications that are to be used in a load-time weaving
environment with an older version of the compiler you need to specify the -Xreweavable compiler
option when building them. This causes AspectJ to save additional state in the class files that is used
to support subsequent reweaving.

Load-time Weaving Requirements
All load-time weaving is done in the context of a class loader, and hence the set of aspects used for
weaving and the types that can be woven are affected by the class loader delegation model. This
ensures that LTW complies with the Java 2 security model. The following rules govern the
interaction of load-time weaving with class loading:

1. All aspects to be used for weaving must be defined to the weaver before any types to be woven
are loaded. This avoids types being "missed" by aspects added later, with the result that
invariants across types fail.

2. All aspects visible to the weaver are usable. A visible aspect is one defined by the weaving class
loader or one of its parent class loaders. All concrete visible aspects are woven and all abstract
visible aspects may be extended.

3. A class loader may only weave classes that it defines. It may not weave classes loaded by a
delegate or parent class loader.

Configuration
New in AspectJ 5 are a number of mechanisms to make load-time weaving easy to use. The load-
time weaving mechanism is chosen through JVM startup options. Configuration files determine the
set of aspects to be used for weaving and which types will be woven. Additional diagnostic options
allow the user to debug the configuration and weaving process.

Enabling Load-time Weaving

AspectJ 5 supports several ways of enabling load-time weaving for an application: agents, a
command-line launch script, and a set of interfaces for integration of AspectJ load-time weaving in
custom environments.

Agents

AspectJ 5 ships with a load-time weaving agent that enables load-time weaving. This agent and
its configuration is execution environment dependent. Configuration for the supported
environments is discussed later in this chapter.

Using Java 5 JVMTI you can specify the -javaagent:pathto/aspectjweaver.jar option to the JVM.

Since AspectJ 1.9.7, the obsolete Oracle/BEA JRockit agent is no longer part of AspectJ. JRockit JDK
never supported Java versions higher than 1.6. Several JRockit JVM features are now part of
HotSpot and tools like Mission Control available for OpenJDK and Oracle JDK.

Command-line wrapper scripts aj

The aj command runs Java programs in Java 1.4 or later by setting up WeavingURLClassLoader as
the system class loader. For more information, see aj, the AspectJ load-time weaving launcher.

The aj5 command runs Java programs in Java 5 by using the
-javaagent:pathto/aspectjweaver.jar option described above. For more information, see aj, the
AspectJ load-time weaving launcher.

Custom class loader

A public interface is provided to allow a user written class loader to instantiate a weaver and
weave classes after loading and before defining them in the JVM. This enables load-time
weaving to be supported in environments where no weaving agent is available. It also allows the
user to explicitly restrict by class loader which classes can be woven. For more information, see
aj, the AspectJ load-time weaving launcher and the API documentation and source for
WeavingURLClassLoader and WeavingAdapter.

Configuring Load-time Weaving with aop.xml files

The weaver is configured using one or more META-INF/aop.xml files located on the class loader
search path. Each file may declare a list of aspects to be used for weaving, type patterns describing
which types should woven, and a set of options to be passed to the weaver. In addition AspectJ 5
supports the definition of concrete aspects in XML. Aspects defined in this way must extend an
abstract aspect visible to the weaver. The abstract aspect may define abstract pointcuts (but not
abstract methods). The following example shows a simple aop.xml file:

<aspectj>

 <aspects>
 <!-- declare two existing aspects to the weaver -->
 <aspect name="com.MyAspect"/>
 <aspect name="com.MyAspect.Inner"/>

 <!-- define a concrete aspect inline -->
 <concrete-aspect name="com.xyz.tracing.MyTracing"
 extends="tracing.AbstractTracing"
 precedence="com.xyz.first, *">
 <pointcut name="tracingScope" expression="within(org.maw.*)"/>
 </concrete-aspect>

 <!-- Of the set of aspects declared to the weaver
 use aspects matching the type pattern "com..*" for weaving. -->
 <include within="com..*"/>

 <!-- Of the set of aspects declared to the weaver
 do not use any aspects with the @CoolAspect annotation for weaving -->
 <exclude within="@CoolAspect *"/>

 </aspects>

 <weaver options="-verbose">
 <!-- Weave types that are within the javax.* or org.aspectj.*
 packages. Also weave all types in the foo package that do
 not have the @NoWeave annotation. -->
 <include within="javax.*"/>
 <include within="org.aspectj.*"/>
 <include within="(!@NoWeave foo.*) AND foo.*"/>

 <!-- Do not weave types within the "bar" pakage -->
 <exclude within="bar.*"/>

 <!-- Dump all types within the "com.foo.bar" package
 to the "./_ajdump" folder on disk (for diagnostic purposes) -->
 <dump within="com.foo.bar.*"/>

 <!-- Dump all types within the "com.foo.bar" package and sub-packages,
 both before are after they are woven,

 which can be used for byte-code generated at runtime
 <dump within="com.foo.bar..*" beforeandafter="true"/>
 </weaver>

</aspectj>

The DTD defining the format of this file is available here: https://www.eclipse.org/aspectj/dtd/
aspectj.dtd.

An aop.xml file contains two key sections: aspects defines one or more aspects to the weaver and
controls which aspects are to be used in the weaving process; weaver defines weaver options and
which types should be woven.

The simplest way to define an aspect to the weaver is to specify the fully-qualified name of the
aspect type in an aspect element. You can also declare (and define to the weaver) aspects inline in
the aop.xml file. This is done using the concrete-aspect element. A concrete-aspect declaration must
provide a pointcut definition for every abstract pointcut in the abstract aspect it extends. This
mechanism is a useful way of externalizing configuration for infrastructure and auxiliary aspects
where the pointcut definitions themselves can be considered part of the configuration of the
service. Refer to the next section for more details.

The aspects element may optionally contain one or more include and exclude elements (by default,
all defined aspects are used for weaving). Specifying include or exclude elements restricts the set of
defined aspects to be used for weaving to those that are matched by an include pattern, but not by
an exclude pattern. The within attribute accepts a type pattern of the same form as a within pcd,
except that && and || are replaced by 'AND' and 'OR'.

Note that include and exclude elements affect all aspects declared to the weaver including those in
other aop.xml files. To help avoid unexpected behaviour a lint warning is issued if an aspect is not
declared as a result of of applying these filters. Also note aspect and concrete-aspect elements must
be used to declare aspects to the weaver i.e. include and exclude elements cannot be used find
aspects on the class loader search path.

The weaver element is used to pass options to the weaver and to specify the set of types that should
be woven. If no include elements are specified then all types visible to the weaver will be woven. In
addition the dump element can be used capture on disk byte-code of woven classes for diagnostic
purposes both before, in the case of those generated at runtime, and after the weaving process.

When several configuration files are visible from a given weaving class loader their contents are
conceptually merged. The files are merged in the order they are found on the search path (with a
regular getResourceAsStream lookup) according to the following rules:

• The set of available aspects is the set of all declared and defined aspects (aspect and concrete-
aspect elements of the aspects section).

• The set of aspects used for weaving is the subset of the available aspects that are matched by at
least one include statement and are not matched by any exclude statements. If there are no
include statements then all non-excluded aspects are included.

• The set of types to be woven are those types matched by at least one weaver include element

https://www.eclipse.org/aspectj/dtd/aspectj.dtd
https://www.eclipse.org/aspectj/dtd/aspectj.dtd

and not matched by any weaver exclude element. If there are no weaver include statements,
then all non-excluded types are included.

• The weaver options are derived by taking the union of the options specified in each of the
weaver options attribute specifications. Where an option takes a value e.g. -warn:none the most
recently defined value will be used.

It is not an error for the same aspect to be defined to the weaver in more than one visible META-
INF/aop.xml file. However, if the same concrete aspect is defined in more than one aop.xml file then
an error will be issued. A concrete aspect defined in this way will be used to weave types loaded by
the class loader that loaded the aop.xml file in which it was defined.

A META-INF/aop.xml can be generated by using either the -outxml or -outxmlfile options of the
AspectJ compiler. It will simply contain a (possibly empty) set of aspect elements; one for each
abstract or concrete aspect defined. When used in conjuction with the -outjar option a JAR is
produced that can be used with the aj5 command or a load-time weaving environment.

Using Concrete Aspects

It is possible to make an abstract aspect concrete by means of the META-INF/aop.xml file. This is
useful way to implement abstract pointcuts at deployment time, and also gives control over
precedence through the precedence attribute of the concrete-aspect XML element. Consider the
following:

package mypack;

@Aspect
public abstract class AbstractAspect {

 // abstract pointcut: no expression is defined
 @Pointcut
 abstract void scope();

 @Before("scope() && execution(* *..doSome(..))")
 public void before(JoinPoint jp) {
 // ...
 }
}

This aspect is equivalent to the following in code style:

package mypack;

public abstract aspect AbstractAspect {

 // abstract pointcut: no expression is defined
 abstract pointcut scope();

 before() : scope() && execution(* *..doSome(..)) {

 // ...
 }
}

This aspect (in either style) can be made concrete using META-INF/aop.xml. It defines the abstract
pointcut scope(). When using this mechanism the following rules apply:

• The parent aspect must be abstract. It can be an @AspectJ or a regular code style aspect.

• Only a simple abstract pointcut can be implemented i.e. a pointcut that doesn’t expose state
(through args(), this(), target(), if()). In @AspectJ syntax as illustrated in this sample, this
means the method that hosts the pointcut must be abstract, have no arguments, and return
void.

• The concrete aspect must implement all inherited abstract pointcuts.

• The concrete aspect may not implement methods so the abstract aspect it extends may not
contain any abstract methods.

A limitation of the implementation of this feature in AspectJ 1.5.0 is that aspects defined using aop.xml
are not exposed to the weaver. This means that they are not affected by advice and ITDs defined in
other aspects. Support for this capability will be considered in a future release.

If more complex aspect inheritance is required use regular aspect inheritance instead of XML. The
following XML definition shows a valid concrete sub-aspect for the abstract aspects above:

<aspectj>
 <aspects>
 <concrete-aspect name="mypack.__My__AbstractAspect" extends=
"mypack.AbstractAspect">
 <pointcut name="scope" expression="within(yourpackage..*)"/>
 </concrete-aspect>
 <aspects>
</aspectj>

It is important to remember that the name attribute in the concrete-aspect directive defines the fully
qualified name that will be given to the concrete aspect. It must a valid class name because the
aspect will be generated on the fly by the weaver. You must also ensure that there are no name
collisions. Note that the concrete aspect will be defined at the classloader level for which the
aop.xml is visible. This implies that if you need to use the aspectof methods to access the aspect
instance(s) (depending on the perclause of the aspect it extends) you have to use the helper API
org.aspectj.lang.Aspects.aspectOf(..) as in:

// exception handling omitted
Class myConcreteAspectClass = Class.forName("mypack.__My__AbstractAspect");

// here we are using a singleton aspect
AbstractAspect concreteInstance = Aspects.aspectOf(myConcreteAspectClass);

Using Concrete Aspects to define precedence

As described in the previous section, the concrete-aspect element in META-INF/aop.xml gives the
option to declare the precedence, just as @DeclarePrecedence or declare precedence do in aspect
source code.

Sometimes it is necessary to declare precedence without extending any abstract aspect. It is
therefore possible to use the concrete-aspect element without the extends attribute and without any
pointcut nested elements, just a precedence attribute. Consider the following:

<aspectj>
 <aspects>
 <concrete-aspect name="mypack.__MyDeclarePrecedence"
 precedence="*..*Security*, Logging+, *"/>
 </aspects>
</aspectj>

This deployment time definitions is only declaring a precedence rule. You have to remember that
the name attribute must be a valid fully qualified class name that will be then reserved for this
concrete-aspect and must not conflict with other classes you deploy.

Weaver Options

The table below lists the AspectJ options supported by LTW. All other options will be ignored and a
warning issued.

Option Purpose

-verbose Issue informational messages about the weaving
process. Messages issued while the weaver is
being bootstrapped are accumulated until all
options are parsed. If the messages are required
to be output immediately you can use the option
-Daj.weaving.verbose=true on the JVM startup
command line.

-debug Issue a messages for each class passed to the
weaver indicating whether it was woven,
excluded or ignored. Also issue messages for
classes defined during the weaving process such
as around advice closures and concrete aspects
defined in META-INF/aop.xml.

-showWeaveInfo Issue informational messages whenever the
weaver touches a class file. This option may also
be enabled using the System property
-Dorg.aspectj.weaver.showWeaveInfo=true.

Option Purpose

-Xlintfile:pathToAResource Configure lint messages as specified in the given
resource (visible from this aop.xml file'
classloader)

-Xlint:default, -Xlint:ignore, … Configure lint messages, refer to documentation
for meaningfull values

-nowarn, -warn:none Suppress warning messages

-Xreweavable Produce class files that can subsequently be
rewoven

-XnoInline Don’t inline around advice.

-XmessageHandlerClass:… Provide alternative output destination to
stdout/stderr for all weaver messages. The given
value must be the full qualified class name of a
class that implements the
org.aspectj.bridge.IMessageHandler interface
and is visible to the classloader with which the
weaver being configured is associated. Exercise
caution when packaging a custom message
handler with an application that is to be woven.
The handler (as well as classes on which it
depends) cannot itself be woven by the aspects
that are declared to the same weaver.

Special cases
The following classes are not exposed to the LTW infrastructure regardless of the aop.xml file(s)
used:

• All org.aspectj.* classes (and subpackages) - as those are needed by the infrastructure itself

• All java. and javax. classes (and subpackages)

• All sun.reflect.* classes - as those are JDK specific classes used when reflective calls occurs

Despite these restrictions, it is perfectly possible to match call join points for calls to these types
providing the calling class is exposed to the weaver. Subtypes of these excluded types that are
exposed to the weaver may of course be woven.

Note that dynamic proxy representations are exposed to the LTW infrastructure and are not
considered a special case.

Some lint options behave differently when used under load-time weaving. The adviceDidNotMatch
won’t be handled as a warn (as during compile time) but as an info message.

Runtime Requirements for Load-time Weaving
To use LTW the aspectjweaver.jar library must be added to the classpath. This contains the AspectJ
5 runtime, weaver, weaving class loader and weaving agents. It also contains the DTD for parsing
XML weaving configuration files.

Supported Agents

JVMTI

When using Java 5 the JVMTI agent can be used by starting the JVM with the following option
(adapt according to the path to aspectjweaver.jar):

-javaagent:pathto/aspectjweaver.jar

JRockit with Java 1.3/1.4 (use JVMTI on Java 5)

Since AspectJ 1.9.7, the obsolete Oracle/BEA JRockit agent is no longer part of AspectJ. JRockit JDK
never supported Java versions higher than 1.6. Several JRockit JVM features are now part of
HotSpot and tools like Mission Control available for OpenJDK and Oracle JDK.

AspectJ version compatibility

Version Compatibility
Systems, code, and build tools change over time, often not in step. Generally, later versions of the
build tools understand earlier versions of the code, but systems should include versions of the
runtime used to build the AspectJ program.

Java compatibility

AspectJ programs can run on any Java VM of the required version. The AspectJ tools produce Java
bytecode .class files that run on Java compatible VM’s. If a Java class is changed by an aspect, the
resulting class is binary compatible (as defined in the Java Language Specification). Further, the
AspectJ compiler and weaving do all the exception checking required of Java compilers by the Java
specifications.

Like other Java compilers, the AspectJ compiler can target particular Java versions. Obviously, code
targeted at one version cannot be run in a VM of a lesser version. The aspectjrt.jar is designed to
take advantage of features available in Java 2 or Java 5, but will run in a JDK 1.1.x environment, so
you can use AspectJ to target older or restricted versions of Java. However, there may be restricted
variants of JDK 1.1.x that do not have API’s used by the AspectJ runtime. If you deploy to one of
those, you can email aspectj-dev@eclipse.org or download the runtime code to modify it for your
environment.

Aside from the runtime, running the AspectJ tools themselves will require a more recent version of
Java. You might use Java 5 to run the AspectJ compiler to produce code for Java 1.1.8.

Runtime library compatibility

When deploying AspectJ programs, include on the classpath the classes, aspects, and the AspectJ
runtime library (aspectjrt.jar). Use the version of the runtime that came with the tools used to
build the program. If the runtime is earlier than the build tools used, it’s very likely to fail. If the
runtime is later than the build tools used, it’s possible (but not guaranteed) that it will work.

Given that, three scenarios cause problems. First, you deploy new aspects into an an existing
system that already has aspects that were built with a different version. Second, the runtime is
already deployed in your system and cannot be changed (e.g., some application servers put
aspectjrt.jar on the bootclasspath). Third, you (unintentionally) deploy two versions of the
runtime, and the one loaded by a parent loader is used).

In earlier versions of AspectJ, these problems present in obscure ways (e.g., unable to resolve a
class). In later versions, a stack trace might even specify that the runtime version is out of sync with
an aspect. To find out if the runtime you deployed is the one actually being used, log the defining
class loader for the aspects and runtime.

Aspect binary compatibility

Generally, binary aspects can be read by later versions of the weaver if the aspects were built by

mailto:aspectj-dev@eclipse.org

version 1.2.1 or later. (Some future weavers might have documented limitations in how far back
they go.) If a post-1.2.1 weaver reads an aspect built by a later version, it will emit a message. If the
weaver reads in a binary aspect and writes it out again, the result will be in the form produced by
that weaver, not the original form of the aspect (just like other weaver output).

With unreleased or development versions of the tools, there are no guarantees for binary
compatibility, unless they are stated in the release notes. If you use aspects built with development
versions of the weaver, be careful to rebuild and redeploy with the next released version.

Aspect source compatibility

Generally, AspectJ source files can be read by later versions of the compiler. Language features do
not change in dot releases (e.g., from 1.2.1 to 1.2.2). In some very rare cases, a language feature will
no longer be supported or may change its meaning; these cases are documented in the release notes
for that version. Some changes like this were necessary when moving to binary weaving in the 1.1
release, but at this time we don’t anticipate more in the future. You might also find that the
program behaves differently if you relied on behavior specific to that compiler/weaver, but which
is not specified in the Semantics appendix to the Programming Guide.

Problems when upgrading to new AspectJ versions

Let’s say your program behaves differently after being built with a new version of the AspectJ tools.
It could be a bug that was introduced by the tools, but often it results from relying on behavior that
was not guaranteed by the compiler. For example, the order of advice across two aspects is not
guaranteed unless there is a precedence relationship between the aspects. If the program implicitly
relies on a certain order that obtains in one compiler, it can fail when built with a different
compiler.

Another trap is deploying into the same system, when the aspectjrt.jar has not been changed
accordingly.

Finally, when updating to a version that has new language features, there is a temptation to change
both the code and the tools at the same time. It’s best to validate the old code with the new tools
before updating the code to use new features. That distinguishes problems of new engineering from
those of new semantics.

../progguide/semantics.html

	The AspectJTM Development Environment Guide
	Table of Contents
	Introduction to the AspectJ tools
	The Eclipse AspectJ implementation
	Bytecode weaving, incremental compilation, and memory usage
	Classpath, inpath, and aspectpath

	ajc, the AspectJ compiler/weaver
	Name
	Synopsis
	Description
	Options
	File names
	Compatibility
	Examples
	The AspectJ compiler API
	Stack Traces and the SourceFile attribute

	ajdoc, the AspectJ API documentation generator
	Name
	Synopsis
	Description
	Examples

	aj, the AspectJ load-time weaving launcher
	Name
	Synopsis
	Description
	Examples

	AspectJ Ant Tasks
	Introduction
	Installing Ant Tasks
	AjcTask (iajc)
	AjcTask (iajc) Options
	AjcTask matching parameters specified as nested elements
	AjcTask Path-like Structures
	Sample of iajc task
	Avoiding clean compiles
	Programmatically handling compiler messages

	Ajc11CompilerAdapter (javac)
	Sample of compiler adapter
	Compiler adapter compilerarg options

	Ajc10 (ajc)
	Ajc10 (ajc) Options
	argfiles - argument list files

	Ajc10 parameters specified as nested elements
	Sample of ajc task

	Isolating problems running the Ant tasks
	Known issues with the Ant tasks
	Ant task questions and bugs

	Load-Time Weaving
	Introduction
	Weaving class files more than once

	Load-time Weaving Requirements
	Configuration
	Enabling Load-time Weaving
	Configuring Load-time Weaving with aop.xml files
	Using Concrete Aspects
	Using Concrete Aspects to define precedence
	Weaver Options

	Special cases
	Runtime Requirements for Load-time Weaving
	Supported Agents
	JVMTI
	JRockit with Java 1.3/1.4 (use JVMTI on Java 5)

	AspectJ version compatibility
	Version Compatibility
	Java compatibility
	Runtime library compatibility
	Aspect binary compatibility
	Aspect source compatibility
	Problems when upgrading to new AspectJ versions

